
β-Lactam Antibiotics 255

255

From: Infectious Disease: Drug Interactions in Infectious Diseases, Second Edition
Edited by: S. C. Piscitelli and K. A. Rodvold © Humana Press Inc., Totowa, NJ

9
β-Lactam Antibiotics

Melinda M. Neuhauser and Larry H. Danziger

INTRODUCTION

The β-lactam antibiotics are a large class of diverse compounds used clinically in
both the oral and parenteral forms. The β-lactam antibiotic agents have become the
most widely used therapeutic class of antimicrobials because of their broad antibacte-
rial spectrum and excellent safety profile. Reports of drug–drug interactions with the
β-lactam antimicrobials are a relatively rare phenomenon, and when interactions do
occur, they are generally minor. This chapter describes the drug–drug interactions of
the β-lactam antibiotics: penicillins, cephalosporins, carbapenems, and monobactams.

As an overview, each β-lactam drug interaction has been categorized as major, mod-
erate, or minor and is presented in Table 1. Interactions classified as major are consid-
ered well documented and have the potential to be life threatening or dangerous.
Moderate interactions are those for which more documentation is needed or potential
harm to the patient is less. Minor interactions are poorly documented, present minimal
potential harm to the patient, or occur with a low incidence.

The clinical significance of drug–drug interactions associated with the β-lactam
antibiotics and understanding of the management of these drug–drug interactions are
presented.

PENICILLIN DRUG INTERACTIONS

Acid-Suppressive Agents

The combination of various penicillins (ampicillin, amoxicillin, bacampicillin, and
amoxicillin/clavulanate) and H2-receptor antagonists (cimetidine and ranitidine) or
omeprazole has been evaluated for effects on the bioavailability of the specific penicil-
lin investigated (1–5). With the exception of bacampicillin, the bioavailability of the
penicillins was unaffected. The area under the curve (AUC) of bacampicillin was
reduced in the presence of food, ranitidine, and sodium bicarbonate (5); however,
another study did not demonstrate a difference in AUC with coadministration of
omeprazole and bacampicillin (2). The concurrent administration of most penicillins
and acid-suppressive agents poses no problems except possibly with bacampicillin.
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Allopurinol
An increased incidence of skin rash has been reported in patients receiving either

ampicillin or amoxicillin concomitantly with allopurinol. In an analysis of data col-
lected in 4686 patients receiving ampicillin, 252 of which were also receiving allopu-
rinol, rash was reported in 5.7% of the patients receiving ampicillin compared to 13.9%
of patients receiving both ampicillin and allopurinol (p = 0.0000001) (6). There were
no differences in age, sex, diagnosis, or admission laboratory value of serum urea ni-
trogen (BUN) that could be identified between the two groups. Similar results of an
increased incidence of a rash have also been reported in patients receiving both
amoxicillin and allopurinol (22%) vs amoxicillin alone (5.9%) (6).

Fessel attempted to determine the possible reasons for the higher incidence of rash
in patients receiving allopurinol and ampicillin (7). Fessel compared the history of
allergies to penicillin, allergies to other antibiotics, presence of hay fever, use of anti-
histamine medications, and the prevalence of asthma in 124 asymptomatic hyper-
uricemic individuals compared to 224 matched normouricemic controls. The following
results were considered significant in asymptomatic hyperuricemic subjects vs the con-
trol subjects: history of penicillin allergy (14.1 vs 4.9%), hay fever (18.8 vs 8.0%), and
use of antihistamine medications (9.9 vs 2.7%). The incidence of allergies to antibiot-
ics excluding penicillin and prevalence of asthma were not significant between groups.
The author hypothesized that hyperuricemic individuals tend to have a higher frequency
of allergic reactions; therefore, this altered immunologic state may explain the increased
incidence of ampicillin rashes rather than an ampicillin–allopurinol interaction.

The significance of this pharmacodynamic interaction tends to be minor. Clinicians
may continue to prescribe these agents concomitantly. Patients should be monitored
and counseled regarding this potential increased incidence of skin rashes when these
two agents are prescribed concurrently.

Aminoglycosides
Penicillins and aminoglycosides are commonly used in combination to treat a vari-

ety of infections. However, concomitant use of the extended-spectrum penicillin anti-
microbials may result in inactivation of the aminoglycosides. Although the majority of
interactions are reported in vitro, the potential for in vivo interactions are of concern,
especially in those patients with end-stage renal failure (8–16).

In Vivo Aminoglycoside Inactivation
McLaughlin and Reeves reported a case report of a patient undergoing hemodialysis

and receiving gentamicin for 8 day for the treatment a soft tissue infection (9). Carbe-
nicillin therapy was added on day 8. The authors reported that therapeutic serum con-
centrations for gentamicin could not be achieved despite administration of high doses
following the addition of carbenicillin. Of note, the patient received more frequent
dialysis sessions during this period, which may have also contributed to subtherapeutic
gentamicin concentrations. Uber et al. noted similar pharmacokinetic findings when
tobramycin and piperacillin were administered concomitantly in a chronic hemodialy-
sis patient (10). McLauglin and Reeves also studied this interaction in an animal model
(9). Rabbits that received only gentamicin were reported to have normal gentamicin
concentrations (n = 2); rabbits receiving carbenicillin and gentamicin had undetectable
levels at 30 hours (n = 3).
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Other investigators have described a reduction in aminoglycoside concentration
when coadministered with extended-spectrum penicillins, particularly in patients with
end-stage renal failure (11–16). Davies et al. evaluated gentamicin half-lives in the
presence of therapeutic doses of ticarcillin or carbenicillin in eight patients with end-
stage renal failure (12). In patients receiving gentamicin concomitantly with ticarcillin,
the gentamicin half-life was reduced from 31 to 22 hours, whereas gentamicin half-life
was reduced from 50 to 8 hours in patients receiving carbenicillin and gentamicin.

Halstenson et al. assessed the effect of piperacillin administration on the disposition
of netilmicin and tobramycin in 12 chronic hemodialysis patients (11). The half-life of
netilmicin was not significantly altered when netilmicin was given concurrently with
piperacillin. In comparison, the half-life of tobramycin was considerably reduced in
the presence of piperacillin (59.62 ± 25.18 vs 24.71 ± 5.41 hours). Lau et al. were
unable to document any such drug–drug interaction between piperacillin and
tobramycin in subjects with normal renal function (defined as creatinine clearances of
greater than or equal to 60 mL/minute) (17). Hitt and colleagues reported no differ-
ences in pharmacokinetic parameters of once-daily gentamicin with the
coadministration of several piperacillin/tazobactam regimens in subjects with normal
renal function (18). Similarly, Dowell et al. were unable to demonstrate differences in
the pharmacokinetic parameters of tobramycin when administered alone or with
piperacillin/tazobactam in subjects with moderate renal impairment (creatinine clear-
ance between 40 and 59 mL/minute), mild renal impairment (creatinine clearance be-
tween 20 and 39 mL/minute), or normal renal function (creatinine clearance greater
than 90 mL/minute) (19).

It has been suggested that the extended-spectrum penicillins interact chemically with
the aminoglycosides to form biologically inactive amides. The degree of inactivation is
dependent on the specific aminoglycoside and β-lactam used (12,20). In vivo inactiva-
tion of aminoglycosides occurs at such a slow rate that it appears to be clinically insig-
nificant in patients with normal renal function (17,20). Some investigators have stated
that this interaction could possibly be relevant for patients with renal failure who have
high serum concentrations of penicillins (11,12,21); therefore, close therapeutic moni-
toring of aminoglycosides is warranted in this specific clinical situation.

Neomycin
Concomitant administration of oral neomycin and penicillin V has been reported

to reduce serum concentrations of penicillin (22). In healthy volunteers, penicillin V
concentrations decreased by over 50% following the administration of oral neomy-
cin concomitantly with penicillin V (22). Because of the significant decrease in peni-
cillin exposure, oral neomycin should not be coadministered with penicillin V.

In Vitro Aminoglycoside Inactivation
McLaughlin and Reeves described undetectable gentamicin concentrations and clini-

cal failure in a patient who received an infusion of carbenicillin and gentamicin for
Pseudomonas bacteremia (9). In vitro inactivation of aminoglycosides can be signifi-
cant when these agents are prepared in the same intravenous mixture for administration
(20). Within 2 hours of admixing at room temperature, an intravenous fluid mixture
containing ampicillin (concentration equivalent to 12 g/day) and gentamicin resulted
in a 50% decline in the gentamicin activity. After 24 hours, no measurable gentamicin
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activity was noted (20). An intravenous fluid mixture containing gentamicin and car-
benicillin demonstrated a 50% reduction in activity between 8 and 12 hours after ad-
mixing at room temperature. Aminoglycosides and penicillins should not be mixed
together prior to infusion.

In Vitro Inactivation Aminoglycoside in Sampling Serum Concentrations
If high concentrations of penicillins are present in serum samples that are to be

assayed for aminoglycoside concentrations, inactivation of the aminoglycosides by the
penicillins can result in falsely decreased aminoglycoside concentrations (8). Penicil-
lin concentration, period of time prior to sampling, and storage temperature of the
sample are factors that affect the extent of inactivation (8). When measuring aminogly-
coside serum concentrations through intravenous tubing, one should flush 5–10 mL of
either normal saline or 5% dextrose in water (based on drug compatibilities) through
the tubing before withdrawing blood to minimize the amount of β-lactam present in the
intravenous tubing prior to sampling.

Aminoglycosides—Synergy
The concomitant use of β-lactam and aminoglycoside antimicrobials has been

described as synergistic for several Gram-positive and Gram-negative organisms (23–26).
By inhibiting the cell wall synthesis, β-lactams increase the porosity of the bacterial
cell wall, resulting in greater aminoglycoside penetration and access to target ribo-
somes (27).

The use of penicillin or ampicillin in combination with an aminoglycoside has been
documented to be advantageous in the treatment of enterococcal infections (28).
Moellering et al. also noted that whereas penicillin exhibits only bacteriostatic activity
against enterococci, the combination of penicillin and streptomycin possesses bacteri-
cidal activity (23). As a result, most severe enterococcal infections are routinely treated
with penicillin or ampicillin plus an aminoglycoside.

Despite the well-documented in vitro synergy between β-lactams and amino-
glycosides, limited clinical data are available supporting superior efficacy of synergis-
tic vs nonsynergistic combinations for the treatment of Gram-negative infections.
Anderson et al. retrospectively evaluated Gram-negative bacteremias to determine if
the treatment with one or two antimicrobials effected outcome and whether in vitro
synergy correlated with superior efficacy (29). Of the 173 patients treated with two
drugs, the clinical response rate was 83% in patients who received synergistic vs 64%
with nonsynergistic antimicrobial regimens (p < 0.05). The use of synergistic antimi-
crobial combinations (aminoglycoside plus ampicillin or carbenicillin) was associated
with better clinical response in patients with neutropenia (p < 0.001), shock (p > 0.001),
Pseudomonas aeruginosa bacteremias (p < 0.05), and “rapidly or ultimately fatal” con-
ditions (p < 0.005). In critically ill patients with Gram-negative bacteremia, the combi-
nation of an extended spectrum penicillin and aminoglycoside is a reasonable
therapeutic approach.

Anticoagulants
Heparin

A number of case reports have suggested that parenteral penicillins in combination
with heparin have caused coagulopathies (30–36) and may predispose patients to clini-
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cally significant bleeding (33–35,37). The exact mechanism of this interaction is
unknown but may be a result of a direct effect on platelet function by penicillins, which
may have an additive anticoagulant effect when combined with heparin (31–32,37).

Wisloff et al. evaluated the bleeding time of patients receiving heparin and penicil-
lins compared to heparin alone (36). Fifty patients were placed on heparin (5000 IU sc
for 7 days) following an elective vascular surgery procedure and were also randomly
assigned to receive a combination of ampicillin and cloxacillin or no antibiotics. The
patients who were receiving heparin along with the penicillins had a slightly longer
bleeding time; however, this was still within an acceptable range in most cases.

Because patients receiving heparin are routinely monitored closely for
coagulopathies and clinically significant bleeding, the potential interaction between
these two drugs does not warrant further precautions.

Warfarin
A decreased anticoagulant effect for warfarin has been documented when given con-

comitantly with nafcillin (38–41) or dicloxacillin (38,42,43). Some clinicians have
postulated that these antibiotics induce the cytochrome P450 system and may increase
the metabolism of warfarin (40,44,45). Another possible explanation may involve the
ability of these highly protein-bound agents to displace warfarin. However, Qureshi et
al. performed an in vitro study and demonstrated that nafcillin did not affect the protein
binding of warfarin (40).

Krstenansky et al. studied the effect of dicloxacillin in seven patients stabilized on
warfarin therapy (42). Prothrombin times (PTs) were obtained prior to treatment and
on days 1, 3, 6, and 7 of dicloxacillin administration. A decrease in the PT was observed
in all patients on day 6 or 7 compared to baseline PT values. The decrease in PT ranged
from 0.3 to 5.6 seconds (mean ± SD of –1.9 ± 1.8 seconds) and was statistically signifi-
cant (p < 0.05).

Brown et al. presented a case report of a patient on 2.5 mg warfarin daily who devel-
oped an increased hypoprothrombinemic response after receiving high-dose intrave-
nous penicillin (24 million units/day). On withdrawal of the penicillin, the patient’s PT
subsequently returned to his baseline (46). Davydov et al. reported a case of a 58-year-
old woman with an interaction of warfarin with amoxicillin/clavulanate, resulting in an
elevated international normalized ratio (INR) and hematuria (47). Although the exact
mechanism of this interaction remains unknown, it has been proposed that broad-spec-
trum antibiotic use may lead to a decrease in vitamin K-producing bacteria within the
gastrointestinal tract. This may then result in a vitamin K-deficient state (especially in
patients with low dietary intake of vitamin K), potentially leading to an increased effect
of warfarin. Clinicians should be aware of the potential interaction between penicillins
and oral anticoagulants and monitor the PT and INR in patients receiving these agents
concurrently.

Aspirin

Large doses of aspirin may increase the serum concentrations and half-lives of peni-
cillin, oxacillin, nafcillin, cloxacillin, and dicloxacillin when administered concurrently
(48,49). Eleven patients with arteriosclerotic disorders received penicillin G before
and after high doses of aspirin (3 g/day) (48). During aspirin administration, penicillin
half-life increased from 44.5 ± 15.8 minutes to 72.4 ± 35.9 minutes (p < 0.05) (48). The
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mechanism of this interaction remains unknown. Some have speculated that this inter-
action may occur as a result of aspirin displacing penicillin from protein-binding sites
or of aspirin competing with penicillins for the renal tubular secretory proteins (48–52).
Avoidance of this combination is unnecessary.

β-Adrenergic Blockers

Coadministration of ampicillin and atenolol may lead to a decrease in the serum
concentration of atenolol. In a crossover study, six healthy subjects were orally admin-
istered 100 mg atenolol alone and with 1 g ampicillin. Atenolol pharmacokinetics were
assessed after a single dose and after reaching steady state. These subjects previously
received intravenous atenolol in another study, which was utilized to determine oral
bioavailability in the present study. The bioavailability of atenolol was reduced from
60 (atenolol alone) to 36 (single-dose atenolol and ampicillin, p < 0.01) to 24% (steady-
state concentrations of atenolol and ampicillin, p < 0.01) (53). Other atenolol pharma-
cokinetic parameter values for AUC, Cmax, and mean steady-state concentrations were
also significantly reduced (p < 0.01). Despite the differences in atenolol serum concen-
tration, blood pressure measurements did not differ between the groups over a 4-week
treatment period.

McLean and colleagues also performed a crossover study administering oral atenolol
and ampicillin to six volunteers (54). Unlike the previous study, these investigators
dosed ampicillin at clinically applicable doses of 250 mg four times a day as well as at
higher doses of 1 g. The mean reduction of AUC was lower in the former dosing regi-
men compared to the latter one (18.2 vs 51.5%).

Although the clinical significance of this interaction is questionable, it would seem
reasonable that patients should be monitored for this interaction when higher doses
of ampicillin are used, especially in the presence of renal dysfunction; however, no
empiric dosage alterations are recommended at this time.

Calcium Channel Blockers

Nifedipine appears to increase the bioavailability of amoxicillin by facilitating its
active transport mechanism within the gastrointestinal tract (55). In a randomized cross-
over study conducted in eight healthy volunteers, each subject received 1 g oral
amoxicillin with 20 mg nifedipine or placebo. The absolute bioavailability of
amoxicillin was noted to increase from 65.25 to 79.2% with the addition of nifedipine
(p < 0.01) (55). The AUC also increased from 29.7 ± 5.3 mg · hours/L (amoxicillin
alone) compared to 36.26 ± 6.9 mg · hours/L (amoxicillin and nifedipine) (p < 0.01).
Because no adverse events were associated with the alterations of these pharmacoki-
netic parameters, no dosage adjustments are recommended.

Nafcillin has been postulated to enhance the elimination of agents metabolized
through the cytochrome P450 system (44,45). A crossover study was conducted to
evaluate the induction potential of nafcillin on nifedipine, a substrate of the cytochrome
P450 3A4 enzyme (56). Healthy volunteers were randomly assigned to receive 5 days
of oral nafcillin (500 mg four times daily) or placebo, which was followed by a single
dose of nifedipine. The subjects who received nafcillin along with nifedipine were
found to have a significant reduction in the nifedipine AUC0–∞ (80.9 ± 32.9 vs 216.4 ±
93.2 μg · hours/L; p < 0.001) and enhanced plasma clearance (138.5 ± 42.0 vs 56.5 ±
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32.0 L/hour; p < 0.002) compared to the nifedipine-placebo group. Because of the
limited available data, the clinical significance of this interaction is unknown.

Chloramphenicol
The administration of a bacteriostatic agent such as chloramphenicol may antago-

nize the bactericidal activity of β-lactam antimicrobials (57,58). β-Lactam antimicro-
bials exhibit their bactericidal effect by binding to penicillin-binding proteins and
inhibiting bacterial cell wall synthesis. For β-lactams to exert optimal bactericidal
effects, bacteria should be actively growing and dividing. However, bacteriostatic
agents such as chloramphenicol, which may inhibit protein synthesis, may interfere
with the bactericidal activity of penicillins.

In vitro studies have demonstrated the concomitant use of penicillin and chloram-
phenicol to be antagonistic (57,59). However, human data do not support these find-
ings (60,61). Patients with gonococcal infections who were treated with a combination
of penicillin and chloramphenicol had better clinical outcomes than patients treated
with penicillin alone (60). Superior outcomes were also reported among patients in-
fected with typhoid fever who were treated with chloramphenicol plus ampicillin com-
pared to chloramphenicol alone (61).

Relevant clinical information is limited for this drug–drug interaction. Because the
in vivo and in vitro data concerning this interaction are contradictory, it is unnecessary
to avoid the concurrent use of these antimicrobials.

Chloroquine
Investigators conducted a study in healthy volunteers to evaluate the coadministra-

tion of chloroquine and ampicillin on the pharmacokinetics of ampicillin (62). Ampi-
cillin pharmacokinetics alone or in the presence of chloroquine was determined by
characterizing the drug’s renal elimination. The mean percentage of dose excreted was
29% for ampicillin alone vs 19% for the ampicillin/chloroquine combination (p <
0.005). The coadministration of ampicillin and chloroquine resulted in a significant
reduction in ampicillin bioavailability but not in time of maximal excretion (62). Based
on limited data, coadministration of these agents may lead to a reduction in ampicillin
concentrations. Although the clinical significance of this interaction remains unknown,
concomitant administration of chloroquine and ampicillin should be avoided.

Ciprofloxacin
Interactions between the penicillins and fluoroquinolones have been rarely docu-

mented (63,64). Barriere et al. assessed the effect of the concurrent administration of
ciprofloxacin and azlocillin in a crossover trial (63). Six subjects were administered
single doses of ciprofloxacin and azlocillin alone and in combination. Similar pharma-
cokinetic profiles were noted with azlocillin; however, when coadministered with
azlocillin, a statistically significant reduction in total clearance and renal clearance of
ciprofloxacin was noted. Based on limited data, coadministration of these agents need
not be avoided.

Contraceptives: Oral Estrogen
Several case reports of breakthrough bleeding and pregnancies have been reported

in patients receiving oral contraceptives and antibiotics concomitantly (65–69). It has
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been postulated that antibiotics interfere with the enterohepatic circulation of oral es-
trogens, resulting in subtherapeutic estrogen concentrations (67–69). After oral estro-
gens are absorbed, they undergo hepatic metabolism to glucuronide and sulfate
conjugates and are excreted into the bile. Bacteria residing in the gut hydrolyze the
conjugates to active drug, which is then reabsorbed by the body (67). The proposed
mechanism of this interaction involves the ability of antibiotics to destroy the gut bac-
teria required to hydrolyze the conjugated estrogen to their active form.

Studies in animal models assessing this interaction have shown mixed results
(70,71). One investigation demonstrated no alterations in the pharmacokinetics of
ethinylestradiol when administered with ampicillin (70). Another study found differ-
ences in both AUC and plasma clearance in the group that received antibiotics com-
pared to those that received ethinylestradiol alone (71).

Several studies have been performed in humans to determine if the case reports and
animal data represent significant findings (72–74). Freidman and colleagues prospec-
tively evaluated the serum concentrations of gonadotropins and other hormones in 11
volunteers receiving Demulen® (50 μg ethinylestradiol and 1 mg ethynodiol diacetate)
plus ampicillin or placebo during two consecutive menstrual cycles (73). Progesterone
concentrations were similar between the Demulen-ampicillin and Demulen-placebo
groups. Follicle-stimulating hormone and luteinizing hormone appeared to be similar
between the two groups. None of the 11 patients underwent ovulation. Freidman and
colleagues concluded that ampicillin should not reduce the effectiveness of Dumulen.
Other researchers have criticized the results of this study because of its study design,
which included a small number of subjects, a short duration of antimicrobial therapy,
and a relatively high dose of estrogens (present in Demulin) (68).

Back and colleagues evaluated seven women receiving oral contraceptives (all con-
taining � 30 μg ethinyloestradiol) for at least 3 months who presented to their clinic
with an infection that required the administration of ampicillin for 8 days (72). Blood
samples were taken during concomitant oral estrogen and ampicillin therapy and dur-
ing the next menstrual cycle without ampicillin. Six female volunteers receiving only
oral contraceptives for at least 3 months were similarly evaluated for the potential drug
interaction. Plasma concentrations of ethinyloestradiol, levonorgestrel, follicle-stimu-
lating hormone, and progesterone were not significantly different between the two
groups (oral contraceptive-ampicillin vs oral contraceptive alone). Despite the fact that
a lower concentration of ethinyloestradiol was seen with two women on ampicillin, the
authors concluded that alternative methods of protection are not necessary in most
women (67).

Another study in volunteers analyzed the effect of administering ampicillin or met-
ronidazole with an oral contraceptive preparation (74). This summary is limited to the
group using ampicillin (n = 6). Subjects initially received a low-dose oral contracep-
tive (1 mg norethisterone acetate and 30 μg ethinyl estradiol). On days 6 and 7, plasma
concentrations of ethinylestradiol and norethisterone were obtained. Subsequently, sub-
jects were administered ampicillin (500 mg twice daily orally for 5–7 days) and the
contraceptive steroid. Following antibiotic treatment, serum hormones, ampicillin, and
progesterone concentrations were measured in the subjects. The concentrations of
norethisterone and ethinylestradiol were not altered in the presence of ampicillin, and
progesterone concentrations were in the appropriate range to suppress ovulation (74).
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It is difficult to determine the clinical significance of this interaction because of the
small number of clinical trials, small number of patients, minimal number of case
reports, and the limited number of oral contraceptives studied. A review article sug-
gested that the possibility of a clinically significant interaction between antibiotics and
oral contraceptives is likely less than 1% (75). The author stated that women with a
greater extent of enterohepatic circulation, previous breakthrough bleeding, or contra-
ceptive failure may have a higher risk for this interaction (75). Because of the potential
risk of contraceptive failure, clinicians should still counsel patients on this potential
interaction and suggest alternative method(s) of contraception if antimicrobial therapy
is necessary.

Cyclosporine

Although nafcillin is not well established as an inducer of the cytochrome P450
system, the following case report suggests that nafcillin may reduce the serum concen-
trations of cyclosporine via induction of the cytochrome P450 system (76).

CASE STUDY 1

On two separate occasions, a 34-year-old woman, status postrenal transplant,
experienced a reduction in cyclosporine serum concentration following nafcillin
administration (76). The patient received 2 g nafcillin intravenously every 6 hours
for a positive culture of methicillin-susceptible Staphylococcus aureus from a
perinephric abscess. On admission, the patient was receiving 400 mg cyclosporine
daily with a corresponding trough serum concentration of 229 ng/mL. After ini-
tiation of nafcillin, her cyclosporine concentrations decreased to 119 ng/mL and
68 ng/mL on days 3 and 7 of nafcillin, respectively, despite stable daily doses of
400 mg cyclosporine. On discontinuation of nafcillin, trough serum concentra-
tions of cyclosporine increased to 141 ng/mL and 205 ng/mL on days 2 and 4
without nafcillin therapy, respectively. No change in renal or hepatic function
was noted throughout this entire treatment period. The second cyclosporine–
nafcillin interaction occurred when the patient was later readmitted for drainage
of retroperitoneal fluid collection. The patient experienced a similar decline in
cyclosporine concentrations during concomitant therapy and subsequent increases
in cyclosporine concentrations following discontinuation of nafcillin. Based on
the findings of this case report, cyclosporine concentrations should be closely
monitored during concomitant nafcillin administration.

Erythromycin

The concurrent administration of erythromycin and penicillin may result in antago-
nism, synergy, or no effect (indifference) on the antibacterial activity of penicillin. β-
Lactams exert their cidal effects on bacteria by binding to penicillin-binding proteins
and inhibiting cell wall synthesis. For β-lactams to exercise their optimal bactericidal
activity, bacteria should be actively growing and dividing; therefore, erythromycin can
interfere with the bactericidal activity of penicillin by inhibiting protein synthesis.

In vitro studies have demonstrated the concomitant administration of penicillin and
erythromycin to be synergistic, antagonistic, additive, or indifferent (77–84). These
differences may be caused by such factors as the specific microorganism involved,
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susceptibility patterns to both agents, antibiotic concentrations, the inoculum effect,
and time of incubation (77,79,81,83–86). Similar to the disparate results demonstrated
in vitro, case reports have shown penicillin and erythromycin antagonism in the treat-
ment of scarlatina (87) and Streptococcus bovis septicemia (88), whereas clinical im-
provement has been reported with the concurrent use of ampicillin and erythromycin in
the treatment of pulmonary nocardiosis (89).

Although there has been concern about the use of the combination of β-lactams and
macrolides because of the possibility of antagonism, they have gained favor for the
treatment of community-acquired pneumonia in the hospitalized patient. Several studies
found that patients with bacteremic pneumococcal pneumonia treated with a β-lactam
plus a macrolide had a lower mortality rate compared to those treated with a single
agent (90–92). As such, treatment guidelines for community-acquired pneumonia rec-
ommend a penicillin and macrolide as a preferred treatment option for hospitalized
patients (93). As evident from these clinical reports and in vitro testing, the antagonism
risk between β-lactams and macrolides appears to be minimal.

Guar Gum

Guar gum, which may be utilized as a food additive, has been reported to reduce
serum concentrations of phenoxymethyl penicillin (94). In a double-blind study, 10
healthy volunteers received guar gum or placebo granules along with 3 million units of
phenoxymethyl penicillin. The peak penicillin concentration decreased significantly
from 7560 ± 1720 to 5680 ± 1390 ng/mL (p < 0.01) when administered with placebo
compared to guar gum. The AUC0–6 hours of penicillin decreased significantly from
14,500 ± 1860 to 10,380 ± 2720 ng/mL · hour (p < 0.001) when administered with guar
gum. The time to peak concentration was not altered significantly. As a result of the
significant decrease in the peak serum concentrations and AUC0–6 h, phenoxymethyl
penicillin should not be administered concomitantly with guar gum.

Interferon-γ
Data suggested that penicillin may interact with a variety of cytokines by conjugat-

ing these biological proteins (95,96). Benzylpenicillin has been shown to conjugate
interferon (IFN)-γ, interleukin (IL)-1β, IL-2, IL-5, IL-13, and tumor necrosis factor
(TNF)-α; however, based on a series of in vitro experiments, benzylpenicillin only
appears to alter the biological activity of IFN-γ (95). Using an in vitro bioassay, Brooks
et al. noted that benzylpenicillin inhibited the ability of IFN-γ to induce CD54 expres-
sion on epithelial cells. Additional preclinical studies suggested that other regulatory
functions of IFN-γ may also be modulated by benzylpenicillin (96). Because IFN-γ
promotes Th1 responses and inhibits Th2 and immunoglobulin E-mediated responses,
disruption of IFN-γ activity by benzylpenicillin may result in clinically significant
immunomodulatory effects, which promote allergy. Referred to Chapter 13 for addi-
tional information on drug–cytokine interactions.

Khat

The chewing of khat (a natural substance obtained from shrubs grown in East Africa
and Yemen) may reduce the bioavailability of ampicillin and amoxicillin (97). In a
crossover design, eight healthy adult male Yemeni subjects received ampicillin or
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amoxicillin under various conditions of khat chewing (97). The urinary excretion
method was utilized to determine the bioavailabilities of ampicillin and amoxicillin
under the following conditions: antibiotic alone, 2 hours before khat chewing, immedi-
ately prior to khat chewing, immediately prior to khat chewing with a meal, midway
through khat chewing, and 2 hours after khat chewing. The bioavailability of ampicil-
lin (measured by percentage of ampicillin excreted unchanged in the urine, peak excre-
tion, and time to peak excretion) was significantly decreased during all conditions
except when administered 2 hours after khat chewing. In contrast, amoxicillin’s
bioavailability was only affected when amoxicillin was taken midway through khat
chewing. Considering the limited use of khat in the developed countries, this should
not be considered a clinically relevant drug–drug interaction. However, if ampicillin
and amoxicillin are administered to an individual using khat, these agents should be
taken at least 2 hours following khat chewing.

Metformin

In a crossover study, healthy volunteers were randomly assigned to receive
metformin alone or metformin along with cephalexin (98). The coadministration of
metformin and cephalexin led to an increase in Cmax and AUC of metformin by approx
30%. It appears that cephalexin interferes with renal clearance of metformin, which
may be because of competition for renal transport proteins such as organic anion or
cation transporter (98,99). Limited data are available on the clinical significance of this
interaction. Clinicians should exercise caution when using these two agents together.

Methotrexate

Weak organic acids such as penicillins can compete with methotrexate (MTX) for
renal tubular secretion (100,101) and reduce the renal elimination of MTX. Various
studies in rabbits have demonstrated a reduction in the renal clearance of MTX and 7-
hydroxymethotrexate (100–103). One of the studies demonstrated nearly 50% reduction
in MTX clearance when piperacillin was administered 10 minutes before and 4 hours
after a single dose of MTX (p � 0.05) (101). The AUC of MTX and its 7-hydroxy-
methotrexate metabolite also differed significantly from the control (p � 0.05).

Despite the rather significant results reported from animal studies, few case reports
have documented this potential interaction (104–109). Bloom and colleagues reported
four cases in which the administration of various penicillins concomitantly with MTX
resulted in the decreased clearance of MTX (105). MTX clearance before and after the
addition of the following antimicrobial agents was as follows: penicillin, 2.8 vs 1.8 L/
hour; piperacillin, 11 vs 3.6 L/hour; ticarcillin, 5.8 vs 2.3 L/hour; and dicloxacillin/
indomethacin, 6.4 vs 0.45 L/hour, respectively. Because of reduction in clearance, these
patients required an extended leucovorin rescue. A case report described severe MTX
toxicity following the concomitant administration of high-dose MTX and oxacillin,
which led to a series of complications and ultimately the death of the patient (109). In
contrast, Herrick and colleagues reported no differences in renal clearance of MTX
administered alone or with flucloxacillin in 10 patients (110).

Avoiding the concomitant use of penicillins and MTX is justified to avoid potential
toxicity. If the concomitant administration of penicillins and MTX is necessary, close
monitoring of MTX concentrations and signs of toxicity is warranted.
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Oseltamivir

A pharmacokinetic study conducted in healthy volunteers evaluated the concurrent
administration of oseltamivir (a prodrug) and amoxicillin (111). No differences in the
pharmacokinetic parameters of oseltamivir’s active metabolite, Ro 64-0802, were noted
when administered alone compared to coadministration with amoxicillin. Also, no phar-
macokinetic differences were noted for amoxicillin with or without the administration
of oseltamivir (111). Based on these finding, oseltamivir may be prescribed with
amoxicillin.

Phenytoin

Highly protein-bound antibiotics such as nafcillin and oxacillin (both approx 90%
bound to plasma proteins) (112) have the potential to interact with other highly pro-
tein-bound agents such as phenytoin (113,114). Because of drug displacement from
protein-binding sites, high doses of nafcillin or oxacillin may increase unbound con-
centrations of phenytoin in certain patient populations (113,114).

Dasgupta et al. conducted an in vitro study to determine the potential drug interac-
tion between oxacillin and phenytoin (113). Serum was collected from three separate
patient populations (A, B, and C). Serum for Group A was collected from healthy
patients receiving phenytoin. Sera for Groups B and C were obtained from hypo-
albuminemic and hyperuremic individuals, respectively. Subjects in these last two
groups were not receiving phenytoin; therefore, the sera were supplemented with
phenytoin. Each group was tested for total and unbound phenytoin concentrations with
and without 15 or 50 μg/mL oxacillin, which represented estimated peak oxacillin con-
centrations following a 500-mg oral dose and a 1-g iv dose, respectively. Serum from
Group A showed no statistical difference in unbound phenytoin concentrations with 15
μg/mL oxacillin; however, a significantly higher unbound phenytoin concentration with
50 μg/mL of oxacillin was observed when compared to serum not containing oxacillin
(1.67 vs 1.47 μg/mL) (p < 0.05). Sera from subjects in Groups B and C also demon-
strated a statistically significant increase in unbound phenytoin concentrations for both
oxacillin concentrations compared to the group without oxacillin.

Dasgupta and colleagues performed another study to determine the potential effect
of nafcillin on unbound phenytoin concentrations (114). The study consisted of both
in vitro and in vivo components. The authors observed both in vitro and in vivo dis-
placement of phenytoin with the addition of nafcillin to serum. Although increases in
unbound phenytoin appeared to be minor for the in vitro portion of the experiment, a
significant increase in unbound phenytoin concentrations was noted in all groups com-
pared to the control group (p < 0.05). Unbound phenytoin concentrations were also
measured in four patients receiving phenytoin and nafcillin concurrently (114). The
investigators obtained unbound phenytoin concentrations during and after nafcillin
therapy. Unbound phenytoin concentrations decreased following the discontinuation
of nafcillin, although baseline phenytoin concentrations were not obtained.

Patients receiving antimicrobials with a high percentage of protein binding (90% or
greater) and concomitant phenytoin should be monitored closely for signs of phenytoin
toxicity. Furthermore, patients receiving high doses of any penicillin should have their
unbound and total phenytoin concentrations monitored closely. Phenytoin dosage
adjustments should be made according to extent of the interaction.
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Probenecid

The interaction of probenecid and penicillins (weak organic acids) occurs primarily
as a result of the inhibition of the tubular secretion of penicillin, although other mecha-
nisms may be possible as well (115,116). The decrease in renal elimination results in
increased penicillin serum concentrations. Studies have shown that the AUCs of
amoxicillin, ampicillin, ticarcillin, and nafcillin may increase by approx 50 to 100%
when coadministered with probenecid (48,116–119). Other β-lactams such as penicillin
and dicloxacillin have also demonstrated increased serum concentrations in the pres-
ence of probenecid (48,120–123). Although probenecid significantly affects renal clear-
ance of piperacillin/tazobactam, it does not significantly effect area under the curve or
half-life of piperacillin/tazobactam (124).

This drug–drug interaction may be clinically beneficial in certain situations in which
higher penicillin serum concentrations are necessary (e.g., in the treatment of meningi-
tis or endocarditis). However, careful monitoring or avoidance of this combination
should be considered in certain patient populations in whom drug accumulation may
occur (e.g., elderly patients or patients with impaired renal function).

Proguanil

Babalola et al. conducted a study in healthy volunteers to evaluate the coadmini-
stration of proguanil and cloxacillin on the pharmacokinetics of cloxacillin (125). Dif-
ferences in pharmacokinetic parameter values for cloxacillin alone or in the presence
of proguanil were determined by assaying urinary samples. Both the maximum excre-
tion rate and total amount of excreted unchanged cloxacillin were reduced by approx
50% when taken with proguanil compared to proguanil alone (p < 0.0001). No differ-
ences were noted in cloxacillin half-life or Tmax. The authors suggested that separating
these two agents by 1–2 hours may avoid this potential interaction.

Sulfonamides

The concurrent administration of penicillins and sulfonamides was evaluated in a
pharmacokinetic study (49). The unbound concentrations of penicillin G, penicillin V,
nafcillin, and dicloxacillin were increased with the concurrent administration of sev-
eral sulfonamides. The researcher postulated that this interaction occurred as a result of
the displacement of penicillins from protein-binding sites (49). In a separate study,
Kunin reported that the coadministration of oral oxacillin and sulfonamides caused a
decrease in oxacillin serum concentrations. The author postulated that perhaps the sul-
fonamides may cause reduced absorption of oral oxacillin; however, additional mecha-
nisms cannot be ruled out (49). Based on these limited clinical data, avoidance of
penicillins and sulfonamides is not warranted.

Tetracyclines

As stated in the Chloramphenicol section, the administration of a bacteriostatic agent,
such as tetracycline or related compounds, may antagonize the bactericidal activity of
β-lactams. Nonetheless, both antagonism and synergy between penicillins and tetracy-
clines has been documented in in vitro and in vivo studies (126–130).

Lepper and Dowling reported the outcome of 57 patients diagnosed with pneumo-
coccal meningitis who were treated with high-dose penicillin (n = 43) or high-dose
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penicillin along with the tetracycline antibiotic aureomycin (n = 14) (131). Although
the severity of illness appeared similar between the treatment groups, mortality rates
were significantly higher in the patients who received combination therapy compared
to penicillin alone (79 vs 30%). Olsson and colleagues also noted a trend toward in-
creased mortality in patients with pneumococcal meningitis treated with penicillin in
combination with a tetracycline derivative (85%; n = 7) vs penicillin alone (52%; n =
23) or erythromycin alone (50%; n = 6) (132). Strom noted that treatment of hemolytic
streptococci with penicillin in combination with chlortetracycline compared to penicil-
lin alone had similar initial clinical response, but the penicillin/chlortetracycline group
experienced a higher incidence of reinfection (133).

Unlike the case studies involving meningitis, Ahern and Kirby reported similar clini-
cal outcomes in patients treated with penicillin alone vs penicillin in combination with
aureomycin for pneumococci pneumonia (134). The authors suggested that the role of
rapid, bactericidal activity of penicillin is of more clinical significance in treating men-
ingitis compared to less-severe infections such as pneumonia. Adhern and Kirby
stressed the importance of penicillin’s role in treating meningitis because of the rela-
tively limited phagocytic activity in the subarachnoid space compared to nonmeningeal
infections such as pneumonia.

Avoiding the combination of penicillin and tetracycline derivatives appears appro-
priate in severe infections requiring rapid bactericidal activity such as meningitis. In
less-severe infections, the use of these drugs in combination has not been documented
to affect outcomes adversely.

Vecuronium
The concurrent administration of vecuronium and acylaminopenicillins has been

reported to prolong muscle paralysis in both humans and animals (135–138). Condon
et al. conducted a double-blind clinical trial to determine the ability of piperacillin or
cefoxitin (control agent) to prolong the muscular blockade of vecuronium (139). Patients
were eligible for study enrollment if they were undergoing an elective operation with
general anesthesia that required antibiotic prophylaxis. Patients were subsequently ran-
domly assigned to receive piperacillin or cefoxitin as the prophylactic antibiotic prior to
the operation. All patients received vecuronium for muscle relaxation. Prolongation of
neuromuscular blockade was determined before and after the administration of the anti-
biotic by the electromyographic twitch response. Of the 27 evaluable patients enrolled in
the study, 5 patients (2 on piperacillin and 3 on cefoxitin) exhibited a nonclinically sig-
nificant prolongation of neuromuscular blockade. Otherwise, the rate and extent of neu-
romuscular blockade was similar between groups. It appears that this interaction is
clinically insignificant, although knowledge of this potential prolongation may be useful
in certain surgical settings.

Miscellaneous Agents
The concomitant administration of penicillins and acidic drugs such as phenylbuta-

zone, sulfinpyearazone, indomethacin, and sulfaphenazole may prolong the half-life of
penicillin. This is postulated to occur as a result of competition between the acidic
drugs and penicillin for renal tubular secretory proteins (48). In this investigation, the
half-life of penicillin was not noted to change significantly with concomitant adminis-
tration of chlorothiazide, sulfamethizole, and sulfamethoxypyearidazine (48).
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Potential drug–drug interactions between the penicillins and theophylline have also
been investigated. The coadministration of amoxicillin, ampicillin, ticarcillin/
clavulanic acid, or ampicillin/sulbactam with theophylline was not noted to alter
theophylline’s properties (140–144).

Deppermann et al. assessed the effect of the coadministration of pirenzepine, an
antimuscarinic, with various antibiotics including amoxicillin in a double-blind, ran-
domized crossover study (4). Coadministration of pirenzepine with amoxicillin did not
significantly alter the pharmacokinetics of amoxicillin.

CEPHALOSPORIN DRUG INTERACTIONS

Acid-Suppressive Agents
Ranitidine and Famotidine

Concomitant administration of the prodrugs cefpodoxime proxetil, cefuroxime
axetil, and cefditoren pivoxil with agents that increase gastric pH, such as ranitidine,
results in a reduction of the antibiotic serum concentrations (5,145). The bioavailability
of the cefpodoxime proxetil has been reported to decrease by approx 30–40% with
concurrent administration of an H2-receptor antagonist (145,146). However, no impact
on the bioavailability of cefpodoxime was noted when famotidine administration was
separated from cefpodoxime by 2 hours. Similarly, the AUC of cefuroxime axetil was
reduced by approx 40% with pretreatment of ranitidine and sodium bicarbonate (5).
The Cmax and AUC of cefditoren pivoxil were reduced by approx 25% with the concur-
rent administration of famotidine (147). Other studies have found no significant effect
on the bioavailability of cephalexin and cefaclor AF when administered concomitantly
with H2-receptor antagonists (4,148). Based on the results from these studies, concur-
rent administration of H2-receptor antagonists and cefuroxime axetil, cefpodoxime
proxetil, and cefditoren pivoxil should be avoided. If these agents need to be adminis-
tered concurrently, the cephalosporins should be given at least 2 hours after the H2-
receptor antagonist.

Antacids

The coadministration of antacids and certain cephalosporins, including Cefaclor CD®,
cefdinir, cefpodoxime, and cefditoren may lead to decreased concentrations of the anti-
biotics (145–149). A variety of studies have reported decreases in cephalosporin AUC
and Cmax to be in the range of 20–40% for cefaclor, cefdinir, and cefpodoxime when
administered with an antacid (145,148,149). A minimal reduction in Cmax (14%) and
AUC (11%) was noted with the concurrent administration of cefditoren with an antacid
(147). Other investigators have found no effect with cephalexin (4) or cefixime (150)
when administered concomitantly with antacids. Certain cephalosporins, including
Cefaclor CD, cefdinir, cefpodoxime, and cefditoren, should not be coadministered with
antacids. If antacids are required during therapy, the cephalosporins should be separated
from the antacid administration by at least 2 hours.

Calcium Channel Blockers

Variable data exist regarding the effects of nifedipine on cephalosporin pharmacoki-
netics (151,152). In a randomized crossover study, each healthy volunteer received
cefixime with nifedipine or placebo (152). The absolute bioavailability of cefixime
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was increased from 31 (cefixime alone) to 53% (cefixime and nifedipine) (p < 0.01).
The AUC0–∞ also increased from 16.1 mg · (cefixime alone) compared to 25.4 mg ·
hours/L (cefixime and nifedipine) (p < 0.01) (152). These investigators have also shown
increased cephalexin concentrations with coadministration of nifedipine or diltiazem
in an animal model (153). The authors concluded that nifedipine can increase the
absorption of these cephalosporins by enhancing the active transport mechanism in the
intestine. In contrast, another study demonstrated that the pharmacokinetics of
cefpodoxime did not change when coadministered with nifedipine (151). Because of
differences in specific antimicrobials and lack of adverse events seen with calcium
channel blocker and cephalosporin combinations, no dosage changes are recommended
when these agents are coadministered.

Cholestyramine

The coadministration of cholestyramine with cefadroxil or cephalexin has been
shown to cause a delay in absorption associated with a prolonged Tmax and reduction
in Cmax (154,155). Despite these pharmacokinetic alterations, other important para-
meters such as AUC or amount of drug excreted in the urine were minimally affected.
Although data for this interaction are limited, the clinical significance is doubtful,
particularly considering that cholestyramine does not appear to alter cephalosporin
exposure.

Contraceptives: Oral Estrogen

Refer to this topic in the discussion of penicillin.

Ethanol: Disulfiramlike Reactions

Semisynthetic cephalosporins containing a methyltetrazolethiol (MTT) side chain,
such as cefamandole, cefoperazone, cefmenoxime, cefotetan, and moxalactam, have
been documented to cause disulfiramlike reactions in patients who consume ethanol
during antibiotic treatment (156–158). Cephalosporins with an MTT side chain inhibit
acetaldehyde dehydrogenase, which results in the accumulation of acetaldehyde, a toxic
metabolite of ethanol. Patients should be instructed not to consume alcohol during and
for several days following antibiotic therapy. Refer to Chapter 12 regarding antimicro-
bials and food interactions for a more detailed review of this topic.

Iron

Coadministration of ferrous sulfate appears to cause a chelation complex and reduce
the absorption of cefdinir (159). In a randomized three-way crossover study, six healthy
male subjects received the following regimens: 200 mg cefdinir alone, 200 mg cefdinir
plus 1050 mg ferrous sulfate sustained release, or 200 mg cefdinir followed by 1050
mg ferrous sulfate sustained release 3 hours later (159). The AUC0–12 ± SD (μg · hours/
mL) was significantly lower in the groups that received cefdinir concomitantly with
ferrous sulfate (0.78 ± 0.25 μg · hours/mL) or at 3 hours following the dose of cefdinir
(6.55 ± 1.61 μg · hours/mL) compared to cefdinir alone (10.3 ± 1.35 μg · hours/mL) (p
< 0.05). To avoid the potential for therapeutic failure of cefdinir, it should not be taken
together with ferrous sulfate.



272 Neuhauser and Danziger

Metoclopramide

A healthy volunteer, crossover study evaluated the effect of food, metoclopramide,
propantheline, and probenecid on the pharmacokinetics of cefprozil (160). In the
metoclopramide arm of the study, volunteers received cefprozil alone or cefprozil
given 0.5 hours after a dose of metoclopramide. Both isomers of cefprozil, cis and
trans, were assayed in blood and urine. Cefprozil’s isomers demonstrated a statisti-
cally significant reduction in mean residence time when administered after
metoclopramide; however, there was no difference in AUC0–∞ or half-life of cefprozil
among the treatment groups. Administration of metoclopramide prior to cefprozil did
not affect its extent of absorption. Concurrent administration of these agents need not
be avoided.

Methotrexate

Rabbits receiving concomitant infusions of MTX and a cephalosporin (ceftriaxone,
ceftazidime, ceftizoxime, or cefoperazone) have been demonstrated to have an increased
renal elimination of MTX and 7-hydroxymethotrexate (100,101).

In a case report, an 8-year-old boy receiving MTX for non-Hodgkin’s lymphoma
experienced a decrease in MTX clearance when MTX was coadministered with
piperacillin (104). The patient subsequently received MTX along with ceftazidime with-
out any impact on MTX clearance. The differences seen in MTX renal elimination
between cephalosporins and piperacillin may be because of the extent of tubular secre-
tion (penicillins > cephalosporins) (100,161).

Based on the limited data available, there have been no documented interactions
resulting in decreased renal elimination of MTX with the concurrent administration of
cephalosporins. However, because of the documented interaction between some peni-
cillins and MTX, close monitoring of MTX concentrations and signs of toxicity (e.g.,
bone marrow suppression, nephrotoxicity, mucositis) is suggested during concurrent
use of cephalosporins and MTX.

Nonsteroidal Anti-Inflammatory Drugs

Diclofenac has been reported to cause an increase in the biliary excretion of
ceftriaxone (162). A study was conducted in patients in whom a cholecystectomy was
performed and a drain was placed in the common bile duct (162). The subjects who
received ceftriaxone along with diclofenac demonstrated a 320% (p < 0.05) increase in
the amount of ceftriaxone excreted in the bile and a 56% (p < 0.05) reduction in the
amount excreted in the urine. Because of limited data, no therapeutic recommendations
can be made.

Phenytoin

Highly protein-bound antibiotics such as ceftriaxone (approx 90% bound to plasma
proteins) (112) have the potential to interact with other highly protein-bound agents
such as phenytoin (114). Because of protein displacement, high doses of ceftriaxone
may increase unbound concentrations of phenytoin in certain patient populations (114).
Dasgupta and colleagues performed an in vitro study to determine the effect of ceftri-
axone in displacing phenytoin from protein-binding sites (114). Estimated peak
ceftriaxone concentrations (270 and 361 μmol/L) were added to pooled sera from
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patients receiving phenytoin. Three groups with varying albumin concentrations were
evaluated. The greatest ceftriaxone-induced displacement effect was seen the group
with the lowest albumin concentration (25 g/L). In this group, the unbound phenytoin
concentrations (μmol/L) (SD) were 8.12 (0.28) for the control, 9.39 (0.12) for 270
μmol/L ceftriaxone, and 9.93 (0.36) for 361 μmol/L ceftriaxone. Although the increases
appear minor, significant increases in unbound phenytoin concentrations were noted in
all groups compared to the control group (p < 0.05). In patients receiving ceftriaxone
concomitantly with phenytoin, monitoring of unbound and total serum concentrations
of phenytoin in addition to watching for signs of phenytoin toxicity is warranted.

Oral Anticoagulants

Semisynthetic cephalosporins containing an MTT substituent at the 3-position, such
as cefamandole, cefoperazone, cefmenoxime, cefotetan, and moxalactam, have been
associated with the development of a hypoprothrombinemia (163). Several case reports
have implicated these agents in prolonged PT or bleeding episodes in patients (164–
170). Angaran and colleagues retrospectively assessed the effect of prophylactic
administration of cefamandole or vancomycin on the warfarin anticoagulation response
in 60 postsurgical patients (171). Patients who received cefamandole had a higher pro-
portion of elevated PTs compared with those who received vancomycin (14 vs 1, p <
0.05). In another study, these same investigators characterized the effect of cefazolin,
cefamandole, and vancomycin on warfarin anticoagulation in patients after cardiac
valve replacement (172). They noted that the greatest number of patients (n = 6) with
elevated PTs received cefamandole compared to cefazolin (n = 1) and vancomycin (n =
1). In addition, cefamandole therapy was associated with a 15–20% greater change in
PTs compared to the cefazolin and vancomycin (p < 0.01). Patients who are malnour-
ished or who have renal insufficiency may be at higher risk for this interaction (164).
The exact mechanism of the hypoprothrombinemic phenomenon is unknown, although
several mechanisms have been proposed (97,173–176). Clinicians are cautioned to
monitor for signs and symptoms of bleeding, PT, and activated partial thromboplastin
time in patients receiving cephalosporins with an MTT side chain and concomitant
therapy with oral anticoagulants.

Probenecid

Probenecid can increase the serum concentrations of most renally eliminated cepha-
losporins (148,160,177–191). Although other mechanisms may contribute, probenecid
appears to inhibit tubular secretion of cephalosporins, resulting in their decreased renal
elimination (115,116). The AUCs of ceftizoxime, cefoxitin, cefaclor, and cefdinir have
been reported to increase by approx 50–100% with the coadministration of probenecid
(115,179,180). Probenecid has been documented to prolong the half-life and increase
the serum concentration of many other cephalosporins as well (148,149,160,177–192).
Certain cephalosporins, such as ceforanide, ceftazidime, ceftriaxone, and moxalactam,
are eliminated through a different pathway, and their pharmacokinetics are not signifi-
cantly altered by probenecid (177,178,193–198).

Achieving high cephalosporin concentrations may be clinically beneficial in certain
situations (e.g., in the treatment of meningitis or endocarditis); however, caution or
avoidance of this combination should be considered in certain patient populations in
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which drug accumulation may occur (e.g., elderly patients or patients with impaired
renal function).

Propantheline

A healthy volunteer, crossover study evaluated the effect of food, metoclopramide,
propantheline, and probenecid on the pharmacokinetics of cefprozil (160). In the
propantheline arm of the study, volunteers received cefprozil alone or cefprozil given
0.5 hours after a dose of propantheline. Both isomers of cefprozil, cis and trans, were
assayed in blood and urine samples. There was no difference in cefprozil AUC0–∞ or
half-life in either treatment group. The administration of propantheline prior to cefprozil
does not affect the extent of cefprozil absorption. No special precautions seem neces-
sary for this combination.

Theophylline

The coadministration of cephalexin or cefaclor with theophylline has not been docu-
mented to significantly alter any pharmacokinetic parameters of theophylline (199–
201). However, Hammond and Abate reported a case of a possible interaction between
theophylline and cefaclor, which resulted in theophylline toxicity (202). It was unclear
whether this was an actual drug–drug interaction or the effect of an acute viral illness
on theophylline disposition. Based on these limited data, no dosage recommendations
are necessary.

Miscellaneous Agents

Older cephalosporins such as cephalothin and cephaloridine have been reported to
cause nephrotoxicity (203,204). The coadministration of these older cephalosporins
with other potential nephrotoxic agents, including colistin (204,205), various
aminoglycosides (203,206–212), and furosemide (213–216), has been associated with
an increased incidence of nephrotoxicity. The clinical impact of this interaction is lim-
ited because these cephalosporins are rarely used in current clinical practice; however,
careful monitoring of renal function is warranted if such combinations are prescribed.
These drug–drug interactions have not been documented as a clinically significant prob-
lem for any of the newer cephalosporins (217–219).

CARBAPENEMS

Probenecid

Concomitant probenecid can increase the concentration of the carbapenems. It is
proposed that probenecid inhibits tubular secretion of the carbapenems, resulting in
their decreased renal elimination. Meropenem’s half-life and AUC were increased by
33 and 55%, respectively, when coadministered with probenecid (220). Probenecid has
less impact on the renal elimination of ertapenem and imipenem. The combination of
ertapenem and probenecid produced a 20% increase in half-life and a 25% increase in
the AUC of ertapenem compared to ertapenem alone (221). In contrast, imipenem’s
half-life and AUC only increased 6 and 13%, respectively, when coadministered with
probenecid (222).

Achieving high concentrations of carbapenems may be clinically beneficial in infec-
tions in which higher serum concentrations are necessary. However, caution or avoid-
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ance of this combination should be considered in patient populations in which drug
accumulation may occur (such as elderly patients or patients with impaired renal func-
tion). The increased serum concentration noted as a result of this drug–drug interaction
may increase the risk of central nervous system toxicity of these agents.

Valproic Acid

Limited data suggest that the coadministration of carbapenems and valproic acid may
lead to decreased concentrations of valproic acid. DeTurck and colleagues described two
case reports in which valproic acid concentrations were decreased following the adminis-
tration of meropenem and amikacin (223). Both patients were receiving valproic acid for
seizure prophylaxis. The first patient was receiving valproic acid as a continuous infu-
sion following the placement of a ventricular drain to relieve obstructive hydrocephalus
secondary to a subdural hemorrhage. Steady-state valproic acid concentrations were
maintained between 50 and 100 mg/L; however, the addition of meropenem and amikacin
therapy resulted in subtherapeutic valproic acid concentrations within 2 days. In the sec-
ond case report, the authors described a female patient receiving valproic acid following
clipping of multiple cerebral aneurysms. Similar to the previous case, valproic acid con-
centrations decreased suddenly with addition of meropenem. Other authors have reported
data on three cases describing a potential interaction with valproic acid and panipenem/
betamipron, a carbapenem (224). Animal models have also found decreased valproic
acid concentrations with the concurrent administration of imipenem (225), meropenem
(226), or panipenem (227) and valproic acid. Monitoring for alteration in valproic acid
concentrations during concurrent carbapenem therapy seems reasonable to avoid the pos-
sibility of subtherapeutic valproic acid serum concentrations.

IMIPENEM/CILASTATIN

Cyclosporine

Based on case reports, cyclosporine and imipenem/cilastatin may demonstrate addi-
tive central nervous system toxicity when administered concomitantly. Bösmuller and
colleagues reported five transplant patients experiencing central nervous system toxic-
ity during administration of cyclosporine and imipenem/cilastatin (228). None of these
patients reported a history of seizures. Four of the five patients experienced a seizure
despite cyclosporine concentrations within normal therapeutic range. The fifth patient
experienced myclonia; this was associated with an elevated cyclosporine concentration
of 900 ng/mL. Symptoms of central nervous toxicity occurred within 1 day in four
patients, and symptoms resolved in all patients with discontinuation of imipenem/
cilastatin or dose reduction of cyclosporine.

Zazgornik and colleagues published a case report of a 62-year-old female receiving
imipenem/cilastatin and cyclosporine who developed central nervous system toxicity
(229). The patient had recently received a renal transplant secondary to interstitial
nephritis and was receiving imipenem/cilastatin for a urinary tract infection. Following
the second dose of imipenem/cilastatin, the patient experienced confusion, agitation,
and tremors, which resulted in the discontinuation of imipenem/cilastatin. The serum
cyclosporine concentration, which was obtained 4 days after imipenem/cilastatin
therapy, was elevated at 1000 ng/mL compared to a previous level of 400 ng/mL. In
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contrast, an investigation in a rat model demonstrated decreased cyclosporine serum
concentrations when it was coadministered with imipenem/cilastatin (230).

Because both imipenem and cyclosporine administered alone may have the poten-
tial to cause central nervous system side effects, it is difficult to determine what role
the combination of these agents may have played in these reports. Based on these lim-
ited clinical data, avoidance of imipenem and cyclosporine is not warranted.

Theophylline

Semel and Allen reported three cases of seizures occurring in patients receiving
imipenem/cilastatin and theophylline (231). None of the patients had a previous history
of neurological or seizure disorder. The authors concluded that the seizures could be
caused by both drugs’ ability to inhibit γ-aminobutyric acid binding to receptors. It is
difficult to differentiate the potential for seizures between the administration of imipenem/
cilastatin alone and the combination of imipenem/cilastatin and theophylline. Avoiding
coadministration of theophylline and imipenem/cilastatin is not warranted.

Ganciclovir

Patients have experienced generalized seizures during concomitant imipenem/
cilastatin and ganciclovir therapy (232). No additional information is available on these
patients. Because of these limited data, it is difficult to differentiate the potential for
seizures of imipenem/cilastatin alone or the combination of imipenem/cilastatin and
ganciclovir. The manufacturer does not recommend coadministration of imipenem/
cilastatin and ganciclovir unless the benefits outweigh the risks.

MONOBACTAMS

Inducers of β-Lactams

Antimicrobials that can induce the production of β-lactamases, such as cefoxitin and
imipenem, should not be used concurrently with aztreonam in the treatment of certain
infections, depending on the causative microorganism (233). This β-lactamase produc-
tion by certain Gram-negative aerobes, such as Enterobacter and Pseudomonas spe-
cies, may lead to the inactivation of aztreonam. Based on the organism isolated and
susceptibility results, one should consider this potential interaction when choosing an
antimicrobial regimen.

Probenecid

Concomitant probenecid can increase aztreonam concentrations (234). It is proposed
that probenecid inhibits tubular secretion resulting in decreased aztreonam renal elimi-
nation. In a randomized crossover trial, six healthy men received aztreonam alone or
aztreonam along with probenecid (234). Coadministration of probenecid with
aztreonam increased aztreonam concentrations from 81.7 ± 3.4 to 86.0 ± 2.2 μg/mL.
This interaction seems to carry minimal clinical risk. No recommendation to avoid the
concurrent administration of probenecid and aztreonam seems warranted.

CASE STUDY 2

A 72-year-old male with a 10-year history of adult onset diabetes mellitus has
been poorly controlled on rosiglitazone, with complications of diabetic retinopa-
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thy and multiple episodes of lower extremity infections. He also takes 5 mg war-
farin daily status post-pulmonary embolism. Seven days ago, he presented to his
local doctor with an infected left baby toe after “bumping it” on the leg of a chair.
At that time, his doctor started him empirically on 500 mg dicloxacillin twice
daily for 7 days. At his follow-up visit a week later, although his infection was
better, it was noted that his INR had changed from 2.2 to less than 1.0.

A decreased anticoagulant effect for warfarin has been documented when given
concomitantly with semisynthetic penicillins like nafcillin or dicloxacillin. It has
been postulated that, because these antibiotics induce the P450 cytochrome sys-
tem, this may lead to an increased warfarin metabolism.

Avoiding the concomitant use of dicloxacillin and warfarin is justified in this
patient to avert this interaction. Selection of another antimicrobial that does not
interfere with warfarin metabolism would be a more reasonable approach in this
patient.

CASE STUDY 3

A 45-year-old white male complaining of earache, pressure above his eye-
brows, and cough producing thick, white purulent sputum for the last 2 weeks
presented to the outpatient clinic for help. The patient also complained of inabil-
ity to sleep because of feeling hot, having a constant pressure in his ears, and
chest soreness. He stated that he has had a productive cough for several months at
a time over the last 3 years. He routinely takes one 65-mg aspirin daily and one
multivitamin supplemented with extra iron. The clinic doctor prescribed 300 mg
cefdinir twice daily for 10 days. Despite taking the medication as directed, he
returned to the clinic 5 days later with only minimal improvement of his symp-
toms and a temperature of 101.1°F. The clinic doctor discontinued the cefdinir
and started another antibiotic.

The apparent clinical failure in this patient may have been caused by the
coadministration of ferrous sulfate and cefdinir. This combination has been shown
to result in a chelation complex that results in reduced absorption of cefdinir.

To avoid the potential for therapeutic failure with cefdinir therapy in this
instance, the two drugs should not be taken together. Or, if the cefdinir therapy
is considered essential, then the drug should be taken at least 2 hours before
administration of the iron-containing product.
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