BONE DENSITOMETRY FOR TECHNOLOGISTS
BONE DENSITOMETRY FOR TECHNOLOGISTS

Second Edition

SYDNEY LOU BONNICK, MD, FACP
LORI ANN LEWIS, MRT, CDT

Clinical Research Center of North Texas
Denton, TX

HUMANA PRESS
TOTOWA, NEW JERSEY
DEDICATION

For Momma, Daddy and Sissy and Bo and his family
L.A.L.

For Mom and Dad, Tooney and Charles
S.L.B.
Preface

Bone densitometry is an extraordinary clinical and research tool. Most of us think of densitometry as a relatively recent technological development, but in fact, its history began more than 100 years ago. In the field of dentistry, crude devices by today’s standards were developed in the late 19th century to evaluate the density of the bone in the mandible. The advances in technology continued, albeit slowly, for the first half of the 20th century, gaining some speed in the 1960s and 1970s. The introduction of dual-energy X-ray absorptiometry in the late 1980s truly opened the door to clinicians’ offices for bone densitometry. In the last 10 years, the advances in technology and the introduction of new machines of various types has occurred with almost blinding speed compared with the pace of development during most of the 20th century.

As densitometry has matured as a field, the number of disease states in which bone density is known to be affected has increased. With this knowledge, physicians in many different fields of medicine now recognize the need to measure bone density as part of the management of their patients. More studies are being requested now than ever before. This demand for densitometry has also led to an increased need for qualified technologists to operate the machines.

Densitometry is a quantitative technique, as are measurements of blood pressure and cholesterol. That is, the technology is used to measure a quantity. But of all the quantitative techniques in use in clinical medicine today, there is none that has the potential to be more accurate or precise than bone densitometry. The technology is highly sophisticated. All of the devices in use today employ computer technology. In spite of this mechanical sophistication, however, the technology will only be as good as the technologist.

The densitometry technologist must have knowledge of skeletal anatomy, densitometry techniques, radiation safety, basic statistics, quality control procedures, and the processes of various diseases such as osteoporosis. The technologist must often make decisions about the conduct of testing without immediate input from the physician. The circumstances in which densitometry is usually performed create the opportunity for extended technologist–patient interaction and discussion. For technologists accustomed to performing radiologic procedures, this degree of interaction is unprecedented. Today’s densitometry technologist must be prepared for these encounters.

There is no substitute for the thoughtful training provided by the manufacturers of the various types of densitometry equipment when the devices are installed. There is also no substitute for careful study of the operator’s manuals that are supplied with these machines. The exact operation of each machine is different. To be proficient on any densitometry device, the technologist must be trained on that specific device. There is a broad knowledge base, however, that all technologists
should possess. Bone Densitometry for Technologists, Second Edition is intended to help provide that base.

It is always difficult to know where to begin. Like so many other fields of medicine, densitometry has its own language and conventions that must be explained so that in-depth discussions can be understood. Chapter 1 is an introduction to the terminology and conventions used in bone densitometry. In Chapter 2, a review of the various techniques and technologies used in quantifying bone mass is presented. This review provides some of the historical development of the field as well as discussing the attributes of the various technologies and the differences between them. In Chapter 4, descriptions provided by the manufacturers of all the devices that were approved by the Food and Drug Administration at the time this book went to press can be found, along with photographs of the devices. New models that have become available since the first edition of this book was published in 2002 have been added. This summary description should be useful in determining what skeletal regions can be studied with any particular device, the nature of the technology employed in the device, the patient radiation exposure during a study, as well as other machine specifics. Chapter 5 covers computer basics. Although technologists and physicians are becoming more comfortable using computers and some of us consider ourselves quite “computer-literate,” many of us are not. All of our machines are computer-driven. A basic knowledge of computers is almost mandatory for a densitometry technologist. This chapter cannot substitute for learning the nuances of the specific software that operates any given device, but it should help those who consider themselves beginners or even intermediate computer users. Since the first edition of Bone Densitometry for Technologists, processing speeds have become faster, hard drives larger, and new types of removable storage media have become available. This chapter has been updated to reflect these developments.

In Chapter 3, the skeletal anatomy of commonly measured densitometry sites is discussed, with an emphasis on those attributes of anatomy that are either unique to densitometry or would have an effect on the measurement of bone density at that site. This knowledge is indispensible for the densitometry technologist. It is equally important that the technologist understand the concept of precision and how to measure it. This is presented in Chapter 6. Without the technologist’s careful attention to precision, those factors that affect it, and knowledge of how to calculate it, the physician to whom the results are given will not be able to interpret follow-up bone density studies to determine if the bone density has changed.

All densitometers, as sophisticated as they are, are mechanical devices. Things can and do go wrong. It is imperative that machine malfunctions be recognized as

* Portions of this chapter were adapted from Bonnick SL. Skeletal anatomy in densitometry. In: Bonnick SL, Bone Densitometry in Clinical Practice, 2nd ed. Totowa, NJ: Humana Press, 2004:31–64. With permission of the publisher.

soon as possible. Otherwise, the data from the machine that is provided by the technologist to the physician will be flawed. This means that a good quality control program must be in place. It is normally the responsibility of the technologist to not only to create this program but also to monitor it. Quality control procedures are discussed in Chapter 8. Almost all quality control procedures involve scanning a phantom. A discussion of the various types of phantoms has been added to Bone Densitometry for Technologists, Second Edition.

Most, but not all, densitometers are also X-ray devices. Radiation safety then must be a concern. Fortunately, both patient and technologist exposures from X-ray densitometry are incredibly small. Nevertheless, the concept of ALARA (as low as reasonably achievable) demands that the patient, the public, and the technologist be protected from unnecessary exposure to ionizing radiation. In Chapter 7, radiation safety concepts are discussed, with recommendations made for radiation safety procedures at densitometry facilities.

Two of the chapters may seem unusual in a book for technologists. Chapter 9 is a review of the disease for which densitometry is most commonly used, osteoporosis. Chapter 10 is a review of how the data that come from these machines are actually interpreted to diagnose osteoporosis and predict fracture risk. These chapters might at first seem more appropriate in a book written for physicians. However, the densitometry technologist normally spends a significant amount of time with the patient. There is ample opportunity for the patient to ask questions of the technologist about osteoporosis and about the test that he or she is about to undergo. The knowledgeable technologist can be a vital link in the education of the patient. He or she can allay unnecessary fears and encourage appropriate medical followup. The technologist is not usurping the role of the physician by doing so if the technologist understands the issues involved. Indeed, the complete medical care of the patient must involve a partnership between the technologist and the physician. The final diagnosis and treatment recommendations for any patient must be left to the physician, but within those bounds there is much that the technologist can do that will actually strengthen the patient's trust in the quality of their care and improve compliance with the medical recommendations. The technologist who understands as much as possible about what the physician will consider as he or she looks at the densitometry report will only be better able to aid that physician in the performance of their profession. Since the publication of the first edition of Bone Densitometry for Technologists, new drugs have been approved for the prevention and/or treatment of osteoporosis and new guidelines have been issued for bone density testing and pharmacologic intervention based on that testing. This information has been added to Chapter 9 in this edition.

In the last few years, densitometry has been applied increasingly in pediatrics. The technical considerations for pediatric densitometry are different from those of adult densitometry and the interpretation of data even more complex. This is an area that is expected to grow, however, and so many of the confounding issues in pediatric densitometry are addressed in Chapter 11 for the first time in this second edition.

Finally, in Chapter 12, there is a review of skeletal morphometry performed with dual-energy X-ray absorptiometry as well as body composition analysis.
These two applications of dual-energy X-ray absorptiometry take the technology beyond the measurement of bone density. Skeletal morphometry, particularly vertebral fracture assessment, is expected to become an integral part of the fracture risk assessment of the postmenopausal woman. Body composition analysis with DXA is an application that is only beginning to achieve some prominence in clinical practice, but its advantages become obvious when compared with other body composition methods. This chapter, like Chapter 11, is completely new in *Bone Densitometry for Technologists, Second Edition*.

The 12 appendices have been updated wherever necessary to reflect the most current information available. Contact information for densitometry equipment manufacturers and organizations of interest can be found in Appendix I. Every attempt was made to verify the accuracy of this information at the time this book went to press. Guidelines for bone density testing and CPT codes have been updated in Appendices III and V, respectively. New conversion equations have been added to Appendix VII and new terms have been added to Appendix XI. Finally, in Appendix XII, the contents of the new CD-ROM are reviewed. On this CD, you will find the Precision Calculator Companion that was first included with *Bone Densitometry in Clinical Practice, Second Edition*, and with which you will be able to calculate the short-term precision and least significant change values for your facility as well as the statistical confidence level for any measured change in BMD. These concepts are discussed thoroughly in Chapter 6. There is also a patient questionnaire that may be customized for your facility. A continuing education review is also found on the CD, which, if successfully completed, may result in the awarding of 15 hours of Category A credit acceptable to the American Society of Radiologic Technologists.

As a technology, bone densitometry is really quite extraordinary. The ability to quantify the density of the bones at a variety of skeletal sites has truly revolutionized the approach to a number of diseases, the most important of which is osteoporosis. Using the information from the machines, physicians can recommend and prescribe interventions that will stop bone loss and prevent disabling fractures. The remarkable advances in skeletal imaging with densitometry devices have made possible quantitative and diagnostic assessments of skeletal structure. But it is in fact the skill and concern of the technologist that enables all of this to happen. It is our hope that *Bone Densitometry for Technologists, Second Edition* assists you in your pursuit of excellence in your profession.

Sydney Lou Bonnick, MD, FACP

Lori Ann Lewis, MRT, CDT
ACKNOWLEDGMENTS

Our gratitude is extended to the following individuals for their assistance and support in the production of this work: Joyce Paucek, Mary Ann Barrick, John Jenkins of Hologic, Inc.; Thomas Hessel of Osteometer Meditech; Louai Al-Dayeh of Compumed, Inc.; Diane King and Jeff Prellwitz of Alara, Inc.; Ken Faulkner and Linda Weynand of GE Healthcare; Daniel Michaeli of Schick Technologies, Inc.; Jody Spear of Quidel Corp.; Tom Sanchez of CooperSurgical Norland; Roger Schulte of Image Analysis, Inc., Colin Miller of Bio-Imaging Technologies, Inc.; Anders Rosholm of Sectra Pronosco; Varda Green of Sunlight Medical, Ltd., and Harry Genant of the University of California San Francisco. And a very special thanks to Cathy Heist, RT of the American Society for Radiologic Technologists for her assistance in the preparation of the continuing educational material for technologists.

We would also like to thank those authors and publishers who allowed us to reproduce their work in the interest of continuing education.
CONTENTS

Dedication .. v
Preface ... vii
Acknowledgments ... xi
Continuing Education .. xxi

Chapter 1: An Introduction to Conventions in Densitometry 1

Densitometry as a Quantitative Measurement Technique 2
 Accuracy and Precision .. 2
The Skeleton in Densitometry ... 4
 Weight Bearing or Non-Weight Bearing .. 4
 Axial or Appendicular ... 4
 Central or Peripheral ... 6
 Cortical or Trabecular ... 6
What Do the Machines Actually Measure? ... 8
 The Effect of Bone Size on Areal Densities ... 9
 Bone Mineral Apparent Density ... 10
 Calculating “Average” Spine Bone Densities ... 11
 Ultrasound Parameters ... 11
The Densitometry Printout ... 12
 The Percentage Comparisons ... 13
 The Standard Score Comparisons ... 15
 The Age-Regression Graph ... 19
 The Standardized BMD ... 20
 The Utility of the sBMD ... 22
The National Health and Nutrition Examination Survey (NHANES)
 III Database for the Proximal Femur ... 23
Nomenclature Guidelines From the International Society
 for Clinical Densitometry .. 25
References ... 26

Chapter 2: Densitometry Techniques ... 29

Plain Radiography in the Assessment of Bone Density 30
Qualitative Morphometry .. 30
 Qualitative Spinal Morphometry .. 30
 The Singh Index .. 31
Quantitative Morphometric Techniques ... 32
 Calcar Femorale Thickness .. 32
 Radiogrammetry .. 33
 The Radiologic Osteoporosis Score ... 35
Chapter 3: Skeletal Anatomy in Densitometry

The Spine in Densitometry

Vertebral Anatomy ... 67
Artifacts in PA or AP Spine Densitometry 73
Vertebral Fractures ... 73
Effect of Osteophytes on BMD 76
Effect of Aortic Calcification on BMD 77
Effect of Facet Sclerosis on BMD 80
Effect of Vertebral Rotation on PA Lumbar Spine Bone Density 81
Other Causes of Artifacts in PA and AP Lumbar Spine Studies 84
The Spine in the Lateral Projection 84
The Proximal Femur in Densitometry 88
Proximal Femur Anatomy 88
Effect of Rotation on BMD in the Proximal Femur 89
Effect of Leg Dominance on BMD in the Proximal Femur 93
Effect of Scoliosis, Osteoarthritis, Osteophytes, Surgery, and Fracture on BMD in the Proximal Femur 93
The Forearm in Densitometry 94
Nomenclature .. 94
Effect of Arm Dominance on Forearm BMD 97
Effect of Artifacts on BMD in the Forearm 98
The Metacarpals, Phalanges, and Calcaneus 100
References .. 102

Chapter 4: FDA-Approved Densitometry Devices

Computer-Enhanced Radiogrammetry 105
Computer-Enhanced Radiographic Absorptiometry 107
Central X-Ray Densitometers 109
Peripheral X-Ray Densitometers 138
Ultrasound Bone Densitometers 148
Chapter 5: Computer Basics ..163
Types of Computers ...164
Desktops, Towers, Minitowers, and Laptops ..164
PCs and MACs ..165
Major Components of a Computer System ..166
Important Components Inside the Computer Housing167
 Motherboard, Random Access Memory, and Slots167
 Central Processing Units ..167
 Hard Drives ..168
 Internal Disk Drives ..169
Input Devices ..170
 The Keyboard ...170
 The Mouse ..172
 The Trackball ..172
Output Devices ..173
 Monitors ...173
 Printers ...174
Computer Ports ..175
 Keyboard and Mouse Ports ..175
 Parallel Ports ...175
 Serial Ports 176
 Universal Serial Bus Ports ..177
 Power, Monitor, Modem, and Network Ports ..177
Types of Storage Media ..179
 Magnetic Media ..180
 Optical Storage Media ..182
 Flash Memory ...183
Protecting the Data ..184
Computer Maintenance ..186

Chapter 6: The Importance of Precision ..189
The Concept of Precision ...189
Performing a Precision Study ...190
 Short-Term Precision Studies ...192
 Mathematical Procedures Used to Calculate Precision195
 Long-Term Precision Studies ...197
Applying the Precision Value to Serial Measurements197
 Determination of Least Significant Change ...197
 Using the Least Significant Change to Determine the Timing of Repeat Measurements ..200
 A Case in Point ..201
More Sophisticated Issues of Statistical Confidence for the Measured Change ..203
 Determining the Level of Confidence for Any Change and Precision ...203
The Confidence Interval for the Change in BMD Between Two Measurements .. 204
The Importance of Precision ... 206
Which Skeletal Sites Should Be Used for Monitoring ... 207
How Frequently Should Measurements Be Repeated? ... 210
A Final Consideration ... 211
References .. 212

Chapter 7: Radiation Safety in X-Ray Densitometry ... 213
Radiation Basics ... 213
 Radiation Quantities ... 214
 The Curie ... 214
 The Roentgen .. 214
 The Rad ... 215
 The Rem ... 215
 The Effective Dose Equivalent ... 216
Harmful Effects of Ionizing Radiation .. 217
 Acute Lethal Radiation Syndromes ... 217
Local Tissue Damage From Radiation ... 218
 Skin ... 218
 Ovaries and Testes ... 218
 Bone Marrow and Blood .. 219
Late Effects of Ionizing Radiation .. 219
Radiation Doses in Densitometry .. 220
Radiation Protection Programs .. 222
 Protection of the Public .. 223
 Protection of the Patient .. 224
 Protection of the Technologist .. 227
 Time, Distance, and Shielding ... 227
 Personnel Monitoring Devices ... 228
 The Pregnant Technologist ... 229
References ... 229

Chapter 8: Quality Control .. 231
Phantoms .. 232
 European Spine Phantom ... 233
 Bona Fide Spine Phantom ... 234
 Hologic Spine and Hip Phantoms ... 235
 Lunar Spine Phantom ... 235
Using the Phantom to Create Control Tables and Charts .. 237
Shewhart Rules and CUSUM Charts ... 241
 Shewhart Rules .. 242
 CUSUM Charts .. 245
Automated Quality Control Procedures ... 249
Replacing a Densitometer ... 254
References ... 255
Chapter 9: An Overview of Osteoporosis .. 257

The Definition of Osteoporosis .. 258
 The 1991 and 1993 Consensus Development Conferences 258
 The 1994 World Health Organization Criteria for Diagnosis of Osteoporosis .. 259
 The 2000 National Institutes of Health Consensus Conference
 Definition of Osteoporosis .. 261
Prevalence of Osteoporosis ... 262
Consequences of Osteoporosis .. 263
Risk Factors for Osteoporosis ... 264
 Attainment of Peak Bone Density .. 264
 Maintenance of Bone Density .. 265
Guidelines for Bone Mass Measurements ... 266
 The National Osteoporosis Foundation Guidelines
 for Bone Mass Measurements .. 266
 Guidelines From Specialty Societies ... 267
The 1997 Bone Mass Measurement Act .. 268
Treatment Guidelines for Postmenopausal Osteoporosis 271
 NOF Guidelines ... 271
 Treatment Guidelines From AACE and NAMS 271
Interventions in Osteoporosis .. 272
 Nonprescription Interventions .. 272
 Lifestyle Modifications ... 272
 Calcium, Vitamin D, and Exercise ... 273
 Prescription Interventions ... 276
 Estrogen Replacement .. 276
 The Selective Estrogen Receptor Modulator Raloxifene 277
 Synthetic Salmon Calcitonin ... 278
 Bisphosphonates ... 278
 Alendronate ... 279
 Risedronate .. 280
 Ibandronate ... 281
 Dosing, Contraindications, and Safety 282
 Teriparatide .. 283
Patient Education Materials ... 284
References ... 285

Chapter 10: Interpretation of Bone Densitometry Data 289

The Results ... 290
 The Skeletal Image ... 290
 Measured and Calculated Bone Density Parameters 292
 Comparisons to the Reference Database ... 296
 Standardized BMD .. 300
 Age-Regression Graph .. 300
Assignment of Diagnostic Category Based on WHO Criteria 303
Conflicting Diagnoses From the Measurement of Multiple Sites 305
Report Review ... 308
References .. 312

Chapter 11: Considerations in Pediatric Densitometry 313
Scan Acquisition and Analysis Considerations 314
Bone Age ... 315
Sexual Maturation Stage .. 317
Considerations of Bone Size and Shape ... 317
Skeletal Development and the Use of Standard Scores in Pediatric Densitometry ... 319
Skeletal Development ... 320
Use of Standard Scores in Pediatric Densitometry 322
Pediatric Reference Databases ... 324
International Society for Clinical Densitometry
Guidelines for Children .. 325
The Specialty of Pediatric Densitometry .. 325
References .. 326

Chapter 12: Moving Beyond Bone Density With Bone Densitometers: Skeletal Morphometry and Body Composition Assessments 329
Skeletal Morphometry for Structural Diagnoses and Prediction of Fracture Risk ... 329
Vertebral Morphometry and Fractures ... 330
Relationship Between Prevalent Spine Fractures and Future Fracture Risk ... 330
Diagnosing Vertebral Fractures ... 330
Vertebral Fracture Assessment
With Genant’s Semiquantitative Technique .. 332
Vertebral Fracture Assessment With Quantitative Techniques 332
Performance Comparisons of Semiquantitative and Quantitative Techniques ... 334
Fan-Array Spine Imaging With DXA ... 335
Proximal Femur Morphometry ... 339
Hip Axis Length ... 339
The Femoral Neck-Shaft Angle ... 342
Femoral Neck Width ... 342
The Upper Femoral Neck .. 342
Hip Strength Analysis ... 344
Body Composition Analysis ... 345
The Body Mass Index .. 346
Body Composition Methods .. 347
Two-Compartment Body Composition Measurement Techniques 349
Underwater Weighing .. 349
Skinfold Measurements .. 350
Bioelectrical Impedance Analysis .. 351
Air Displacement Plethysmography .. 352
Three-Compartment Body Composition Measurement Techniques ... 352
Near Infrared Interactance .. 352
Dual Energy X-Ray Absorptiometry .. 353

References .. 361

Appendix I: Contacts for Bone Densitometry Manufacturers and Organizations of Interest ... 367
Appendix II: World Health Organization Criteria for the Diagnosis of Osteoporosis Based on the Measurement of Bone Density .. 373
Appendix III: Guidelines for Bone Density Testing 375
Appendix IV: Bone Mass Measurement Act of 1997 379
Appendix V: CPT Codes for Bone Densitometry 381
Appendix VI: Dual-Energy X-Ray Absorptiometry Posteroanterior Lumbar Spine Labeling Guidelines .. 383
Appendix VII: Conversion Formulas ... 385
Appendix VIII: Recommended Procedures for Short-Term Precision Studies ... 389
Appendix IX: Least Significant Change .. 393
Appendix X: Quality Control Shewhart Rules 395
Appendix XI: Glossary of Computer Terms 397
Appendix XII: The CD-ROM Companion 407

Index .. 409
About the Authors ... 417
CONTINUING EDUCATION

The Companion CD for this book contains a continuing education test good for 15 hours of Category A credit from the American Society of Radiologic Technologists (ASRT). Instructions for the test are contained within the program. The Program also includes links to a Patient Questionnaire in Word format and a Precision Calculator for Bone Densitometry Technologists in Excel format.

The CD-ROM program requires one of the following:
• A PC running windows 98 or higher
• Mac OSX 10.2 or later
• Mac OS 9.2

Additional software is required for use with the linked Word and Excel documents. A printer is required to print the results of the test.