
THE PROBLEM

The enduring success of the low-friction arthroplasty,
advanced by Sir John Charnley as a solution for hip
arthrosis, may be appreciated by the fact that in 2002
almost 700000 primary and revision hip and knee
arthroplasties were performed in the United States, a
number more than doubling on a global basis1 (Table
2.1). The prevalence of aseptic loosening attributed to
ultra-high molecular weight polyethylene (UHMWPE)
wear debris-induced osteolysis is in the single digits in
most contemporary knee series, with some reports
describing prosthesis survival beyond 20 years.2–12 Despite
this obvious success, UHMWPE wear is an inescapable
consequence of total joint articulation and is of contem-
porary concern particularly as our population grays 
and lifestyle demands increase.13–22 Appreciating both the
causes and remedies of in vivo UHMWPE failure assists
the goal of avoiding total knee arthroplasty revision as an
endpoint.

THE MATERIAL

The UHMWPE used in joint arthroplasty components
results from polymerization of ethylene gas into a fine
resin powder of submicron and micron size distribution.
A number of resin mixtures exist, but GUR 1050 is 
the prevalent polymer used in contemporary devices.
They are consolidated with the use of ram extrusion 
or compression-molding techniques. Structurally,
UHMWPE is made up of repeating carbon-hydrogen
chains that are arranged in ordered (crystalline) and dis-
ordered (amorphous) regions.23

Processing Shortcomings
Inadequate quality control during manufacture has
resulted in fusion defects arising from incomplete poly-
merization, voids, and foreign body inclusions, which
ultimately contribute to the in vivo degradation of the
final part.24–26 Previous attempts to improve UHMWPE
performance have included carbon fiber reinforcement
(Poly-2)27 and polymer reprocessing by hot isostatic
pressing (Hylamer).28 The former was withdrawn from
the market because of an unexpectedly high wear rate29

(Figure 2-1), while the latter has been linked to debris-
induced osteolytic response, especially when sterilized by
gamma irradiation in air30 (Figure 2-2). Heat pressing 
was yet another attempt to improve the finish of the artic-
ular surface, but was associated with UHMWPE fatigue
and early delamination31 (Figure 2-3). These material
innovations describe checkered pasts as they moved from
the laboratory to clinical application.

Sterilization Oversights
Gamma irradiation in air has, until recently, been the pre-
dominant method of UHMWPE component sterilization
and, despite current concerns, represents the only gold
standard against which contemporary material improve-
ments will be measured over time. However, recent at-
tention drawn to an increasing prevalence of tibial com-
ponent failures associated with debris-induced osteolysis
has raised concerns over the long-term durability of con-
temporary devices.32,33 A clinical follow-up study reported
by Bohl et al. suggests that this may be accounted for by
the prolonged shelf storage prior to implantation of
UHMWPE components gamma irradiated in air.34 A 12%
to 20% reduction in in vivo survival is noted for shelf
storage ranging from 4 to 11 years with a mean in vivo
time to revision of 2.5 years (Figures 2-4 and 2-5).

10

CHAPTER 2

Ultra-High Molecular Weight
Polyethylene in Total Knee

Arthroplasty
A. Seth Greenwald and Christine S. Heim



Chapter 2: Ultra-High Molecular Weight Polyethylene in Total Knee Arthroplasty 11

FIGURE 2-1. Five-year retrieval of a failed Poly-2 tibial insert
demonstrating a high component wear rate with infiltration of
carbon fibers and polyethylene debris into surrounding tissue.

FIGURE 2-2. Three-year retrieval of a failed Hylamer-M tibial
plateau demonstrating an unexpectedly high wear rate with corre-
sponding wear and debris-induced inflammatory tissue response.

FIGURE 2-3. Six-year retrieval of a heat-pressed tibial compo-
nent associated with polyethylene fatigue and early delamination.
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FIGURE 2-4. The influence of shelf storage on survival of a pros-
thetic knee plateau following gamma irradiation in air. (From Bohl,
Bohl, Postak, et al.34 by permission of Clin Orthop.)

FIGURE 2-5. A Group 2 plateau implanted after 7.6 years of shelf
storage and retrieved 3.8 years after implantation. Gross delamina-
tion and pitting, characteristics of fatigue failure, are observed.
(From Bohl, Bohl, Postak, et al.34 by permission of Clin Orthop.)

TABLE 2.1. Hip and Knee Arthroplasty Procedures
Performed in the United States in 2002.

Primary Revision Total

Knees 321084 31159 352243
Hips 300434 43082 343816
Total 621518 74241 696059

Data from Orthopaedic Network News.1
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ation, creating free radicals, which preferentially combine
with available oxygen38,39 (Figure 2-7). The onset of mass
UHMWPE component production and device modular-
ity resulted in extended component shelf storage before
use. This was not a previous consideration, but ongoing
shelf life oxidation offers an explanation for mechanical
compromise of the polymer in situ36,38,40,41 (Figure 2-8). It
is also noted, in this regard, that in vivo component oxi-
dation occurs, but to a lesser degree.42

Component Manufacturing Deficiencies
As knee designs have evolved, a growing appreciation of the
avoidance of round-on-flat geometries through the ranges
of knee flexion in favor of round-on-curved surfaces em-
erged.32 The ability of a given design to minimize contact
stresses during walking gait contributes to UHMWPE tibial
component longevity. The increased tibial-femoral con-
formity realized in posterior cruciate ligament (PCL) sac-
rificing knee plateaus serves to enhance UHMWPE service
life by attenuation of peak contact stresses responsible for
material damage. This is appreciated in the comparison
shown between PCL preserving and PCL sacrificing plateau
geometries articulating against their respective, common
femoral component (Figure 2-9).

The trend toward more conforming design geome-
tries also has associated with it the expectation that
femoral component tolerances be maintained during the
manufacturing process. Failure to achieve this can dra-
matically decrease contact surfaces, elevate peak stresses,
and, concurrent with articulation, is the harbinger of
material damage44 (Figure 2-10). This is of particular
import with the current interest in mobile bearing knee
designs, whose cited advantage is the maximization of
contact surfaces during gait.45

Third-Body Wear
The interaction of third-body particulate between artic-
ulation surfaces in knee replacement consistently demon-
strates catalysis of UHMWPE damage. Surface scratching
of the metallic counterface resulting from these interac-
tions further contributes to the wear process. Foreign
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FIGURE 2-6. Tibial-femoral contact area for a 5.6-mm thick
tibial plateau carrying >20MPa stresses during articulation dra-
matically increases with lengthening shelf storage periods.
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FIGURE 2-7. Depicted polymer chain breakage following irradi-
ation in air and combination with oxygen facilitating oxidative
degradation of UHMWPE.

FIGURE 2-8. Three-year retrieval of a fully oxidized, gamma
irradiated in air, UHMWPE tibial component demonstrating a cir-
cumferential white band indicative of polymer embrittlement after
prolonged shelf life. Fusion defects from incomplete consolidation
are noted.

Further, laboratory studies indicate that as shelf
storage increases, the amount of UHMWPE exposed to
high surface stresses during articulation increases dra-
matically and is a contributing factor to early in vivo
polymer failure35–37 (Figure 2-6).

The explanation for these observations lies in the
mechanics of the sterilization process, which facilitates
breakage of polymer chains by the incoming gamma radi-
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Component Design Influences
With the introduction of modularity, the interest in the
all-poly tibia diminished, despite successful, long-term
clinical reports.46,47 Monoblock components were also
introduced with the goal of optimizing stress transfer to
the tibial bone surface.48 Recently, attention has been
drawn to the shortcomings of modular designs by the
report of backside wear and an associated link to 
osteolysis and aseptic loosening.49–58 Locking mechanism
deficiency has been cited as a factor in allowing displace-
ment between the insert and tibial tray to occur resulting
in UHMWPE debris generation (Figure 2-12). Particulate
transport to the intramedullary canal is facilitated
through gaps at the locking mechanism interface as well
as through screw holes when present.

Component Malalignment: 
A Surgical Prodrome
The forces and torques that occur during walking gait,
particularly during toe-off, promote articulation in the
posteromedial quadrant of tibial inserts.59–63 Retrieved
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FIGURE 2-9. Contact areas by surface stress range of PCL-
preserving and PCL-sacrificing tibial-femoral conformities at 0
degrees extension. The overall bar height depicts the total contact
area. (From Heim, Postak, Greenwald43 by permission of AAOS.)
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FIGURE 2-10. Finite element analysis of tibial-femoral contact
areas and surface stresses of a contemporary mobile bearing knee
design at 0 degrees extension. Poor mating of the articulating sur-
faces is observed resulting in peripheral contact with damaging
stress levels.

FIGURE 2-11. An early retrieval of a cementless, metal-backed
tibial component demonstrating the effects of third-body entrap-
ment. Bead embedment as well as delamination and pitting are
observed in the posteromedial quadrant.

body inclusions may derive from acrylic bone cement,
entrapped bone, and beads from an incomplete sintering
process or hydroxyapatite (HA) particulate (Figure 2-11).

FIGURE 2-12. Visualization of adhesive film transfer demon-
strating UHMWPE insert rotatory micromotion in a modular tibial
component.
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components of failed knee arthroplasties demonstrate
UHMWPE damage patterns in this area64–68 (Figure 2-13).
Notwithstanding poor component design, causal factors
include overloading the medial compartment, improper
surgical correction or alignment of the bony structures,
insufficient soft tissue balance and release, polyethylene
cold flow near the edge of the tibial plateau, and surgical

FIGURE 2-13. UHMWPE tibial component retrieval showing
deformation and wear in the posteromedial portion of the insert.
(From Swany, Scott,68 by permission of J Arthroplasty.)

FIGURE 2-14. The distribution of contact stresses at the toe-off position of walking gait for a PCL
preserving design at (A) neutral rotation and (B) after the application of a 16 N-m external torque,
simulating deliberate component malalignment. A dramatic increase in peak contact stresses is
observed, which is contributory to component damage. (From Morra, Postak, Plaxton, et al.70 by per-
mission of Clin Orthop.)

malrotation of the components.64–68 In addition, the
dynamic effects of lift-off and subsequent impact loading,
and unusual patient kinematics further increase the
potential for posteromedial failures.69 The influence 
of surgical malrotation may be appreciated in Figure 
2-14A, B, which demonstrate dramatic changes in loca-
tion, contact area, and peak stresses for a PCL preserving
knee in laboratory investigation.70

THE REMEDIES

UHMWPE Sterilization Techniques
Attempts to remove oxygen from the sterilization process
include the use of inert gas and vacuum environments 
or by avoiding gamma irradiation altogether through the
use of ethylene oxide (EtO) or gas plasmas.71–73 Acetabu-
lar components sterilized by these techniques demon-
strate a reduction in UHMWPE wear in hip simulation
studies (Figure 2-15).

Today, orthopedic device manufacturers avoid the 
use of an air environment when packaging UHMWPE
components sterilized through the gamma irradiation
process. Further, sterilization dates are now standard on
package labeling of UHMWPE components.
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UHMWPE Processing Techniques
It is now quantitatively appreciated that increasing the
gamma radiation dose above the 2.5 Mrad level used in
conventional UHMWPE component sterilization,
encourages free radicals to combine, creating crosslinks
between the molecules of adjacent chains, which is
further enhanced in an oxygen-free environment.74–76

This graph from McKellop and coworkers is descriptive
of this phenomenon in a simulator comparison of acetab-
ular cup components (Figure 2-16). The volumetric wear
per million cycles is dramatically reduced with increasing
gamma radiation exposure.

There are clinical reports attributed to Oonishi and
Grobbelaar, which describe in vivo UHMWPE wear
reduction in acetabular components realized through
increased crosslinking.77–82 However, these studies
employed large doses of gamma radiation (>50 Mrad),
which are known to cause polymer embrittlement 

and yellowing. Wroblewski employing a chemically
enhanced cross-linked polymer, achieved similar findings
both in vivo and in vitro, when coupled with an Alumina
articulation.83

In some sense these isolated studies point the way to
a new class of UHMWPEs, whose common denominator
is an appreciation of the importance of increased
crosslinking while minimizing oxidative degradation to
reduce wear. Current methods used to manufacture these
moderately to highly cross-linked UHMWPEs are shown
(Figure 2-17). Process differences include (1) heating
above or below the melt temperature of the polyethylene,
(2) the type of radiation employed, (3) the radiation dose
level, and (4) the endpoint sterilization.

All have received Food and Drug Administration
510[k] clearance, allowing commercial distribution for
both hip and knee components. Currently, there is a
minimum of short-term clinical reports supporting the
advantage of these increased cross-linked UHMWPEs for
the hip84–90 and knee.91,92 However, impressive laboratory
data have been produced, predominantly with regard to
hip simulation.93–97

Manufacturing Optimization
The attainment of femoral component tolerances has
markedly improved with the relatively recent use of com-
puter-aided precision grinding as a standard finishing
technique for metallic femoral knee components. This is
particularly beneficial where small variations in surface
contours have large effects on contact areas and surface
stresses (Figure 2-18). The implications of this technique
have potentially far-reaching consequences. As design
specifications are produced with higher required toler-
ances, as in contemporary mobile bearing knee designs,
the need for precision manufacturing is imperative
(Figure 2-19).

Tibial Tray Design Improvement
Improving the capture mechanisms of UHMWPE tibial
inserts is an ongoing design challenge. Minimizing insert
microdisplacement over time will contribute to reduced
UHMWPE debris generation. This notwithstanding,
careful attention must also be paid to the tibial tray mate-
rial and its surface finish. Just as polished, titanium
femoral heads fell from clinical popularity as their sur-
faces easily scratched and wore during articulation,98–100

modular tibial tray components should be manufactured
using cobalt-chrome alloys. If, because of modular mis-
match, microdisplacement is inevitable, the articulation
surfaces should be optimized to reduce the potential for
wear debris generation. From a design perspective, cir-
cumferential capture and the capping or avoidance of
screw holes should be considered, so as to avoid potential
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FIGURE 2-15. Hip simulator weight-loss comparison for aged
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components: (A) gamma irradiated in air; (B) sterilized with eth-
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FIGURE 2-16. Mean acetabular cup wear rates versus gamma
dose level. (From McKellop, Shen, Lu, et al.75 by permission of J
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FIGURE 2-17. Current methods used to manufacture moderately to highly cross-linked 
UHWMPE.
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FIGURE 2-18. A comparison of tibial-femoral contact areas by
surface stress range for belt finishing and computer-aided precision
grinding techniques of a single femoral component design at 0
degrees extension. The overall bar height depicts the total contact
area. (From Helm, Postak, Greenwald43 by permission of AAOS.)

FIGURE 2-19. Finite element analysis demonstrating the 
optimization of tibial-femoral contact areas and surface stresses
resulting from quality controlled finishing of the component
demonstrated earlier in Figure 2-10. It is apparent that use of the
conforming geometries has been achieved with the resulting dimin-
ishment of peak contact stresses.
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pathways for debris transport.101–105 A further conse-
quence of modularity is the employment of highly cross-
linked UHMWPE inserts whose fracture toughness is
reduced. Locking points in tray design represent foci for
stress concentrators, increasing the potential for crack ini-
tiation, the propagation of which occurs more rapidly in
these materials than conventional polyethylene.106

Surgical Optimization
The increasing emphasis on templating and the relatively
recent introduction of computer-assisted navigation
techniques offer the promise that component malalign-
ment may ultimately be minimized.107–109 Eliminating the
outliers in component placement will contribute to
diminishing UHMWPE material damage in knee arthro-
plasty. Continued improvements in instrument design go
hand-in-hand with the achievement of this goal.

Patient Factors: Do They Really Matter?
Overenthusiastic patient use following total knee arthro-
plasty has been cited as a factor influencing failure.110–112

Its occurrence, however, has generally been described in
singular case reports in much the same way as failure
attributed to obesity. Series reports do not support a rela-
tionship between increased body mass index and device
failure following arthroplasty.113–118 Surgical preference,
however, weighs in favor of the lightweight patient as the
ideal arthroplasty candidate.119 However, it is known from
both physical laboratory testing and finite element analy-
sis that load magnitude in combination with displace-
ment are factors influencing UHMWPE damage.120–127

While a recommendation for patient weight loss before
surgery may be justified from these laboratory investiga-
tions, the clinical reality of achieving this does not lie in
the patient’s or surgeon’s favor.128

THE CONCERNS

Highly Cross-Linked UHMWPE Use in TKA
The proclaimed advantage of highly cross-linked
UHMWPEs lies in the reduction of wear debris genera-
tion through enhanced crosslinking of the polymer chains
coincident with the elimination of oxidation. However,
changes in the mechanical properties of these materials,
particularly in their reduced resistance to fatigue crack
propagation (fracture toughness) raises concerns about
their long-term suitability in hip and knee components
where locking mechanisms offer foci for stress risers106

(Figures 2-20, 2-21, and 2-22). An appreciation of the dif-
fering modes of hip (abrasion and adhesion) and knee
(pitting and delamination) failure, confirmed through
conventional UHMWPE component retrieval,132–134 sug-

gests that a universal, highly cross-linked polymer may
not be appropriate.

Investigation into the means by which fracture tough-
ness and ultimate tensile strength of these new polymers
may be increased is and should be an ongoing quest, par-
ticularly if their rapid employment will lead to obsoles-
cence of conventional UHMWPE. Its furthest hope in
knee replacement application would be a reduction in the
capacity for these materials to pit and delaminate or, in
other words, when the knee behaves like a hip in terms of
its wear process. This reality may be appreciated with
designs of increasing conformity such as those found in
mobile bearing knees.

FIGURE 2-20. A 1-year conventional UHMWPE, primary
acetabular liner demonstrating crack initiation and propagation.
Failure initiated at a sharp edge of a locking point. (From Tradon-
sky, Postak, Froimson129 by permission of Clin Orthop.)

FIGURE 2-21. A 10-month highly cross-linked UHMWPE, revi-
sion acetabular liner demonstrating crack initiation and propaga-
tion. The decision to retain the acetabular shell in an almost vertical
and anteverted position contributed to this early failure, which 
was compounded by the decision to use a 40-mm femoral head 
and a correspondingly thin liner. (From Halley, Glassman,
Crowninshield130 by permission of J Bone Joint Surg.)
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Particle Bioreactivity
Conventional wisdom and our experience particular to
hip arthroplasty suggest that osteolytic response is asso-
ciated with both particle size and debris volume. Labora-
tory hip simulator experiments have shown that
UHMWPE particle volumes in various size ranges are
dependent on radiation dose135 (Figures 2-23 and 2-24).
The greatest potential for cytokine release, the first step in
the sequelae leading to osteolysis, following macrophage
debris encapsulation is at the <1 micron level. Ingram et
al. have suggested that highly cross-linked UHMWPE
debris obtained from scratched surface articulation is
bioreactive when placed in culture medium and appears
to be volume dependent.136

The influence of surface roughness has been further
investigated by Scott et al. in a hip simulator comparison
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FIGURE 2-23. Comparative volumes of acetabular particle gen-
eration for different size ranges per million cycles for conventional
and highly cross-linked UHMWPEs at 5 and 10 Mrads resulting
from hip simulation. ECD, equivalent circular diameter. (From
Ries, Scott, Jani,135 by permission of J Bone Joint Surg.)

A

B

C
FIGURE 2-24. Corresponding SEM visualization (10000¥) of
particle distribution for (A) conventional and (B and C) highly
cross-linked UHMWPEs at 5 and 10 Mrads, respectively, employ-
ing a 0.05-micron filter. The particles are highlighted for apprecia-
tion. (From Ries, Scott, Jani,135 by permission of J Bone Joint Surg.)

FIGURE 2-22. A 3-year failure of a constrained condylar con-
ventional UHMWPE tibial insert. Failure of the posterior locking
mechanism resulted in posterior component lift-off. (From Ries131

by permission of J Bone Joint Surg.)



Chapter 2: Ultra-High Molecular Weight Polyethylene in Total Knee Arthroplasty 19

between conventional, EtO, and 10 Mrad polyethylene
components.137 As one appreciates from Figure 2-25,
roughened surfaces have a negative influence on particle
production where highly cross-linked polyethylenes are
employed. This has been challenged most recently by
Muratoglu et al. in a study in which retrieved femoral
components were articulated in knee simulation against
a highly cross-linked polyethylene.138

Alternatives to reduce the influence of surface rough-
ness on femoral component design have recently been
reported using fully oxidized zirconium surfaces. This 
has relevance on the long-term viability of knee articula-
tions with conventional UHMWPE tibial inserts, but 
its performance is unknown with highly cross-linked 
materials.139,140

Direct-to-Consumer Marketing
Further, it is no small coincidence that almost 62% of all
polyethylene acetabular components sold in the United
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FIGURE 2-25. The influence of smooth and roughened femoral
head surfaces on particle generation for conventional and highly
cross-linked UHMWPE acetabular components resulting from hip
simulation. (From Good, Ries, Barrack, et al.139 by permission of J
Bone Joint Surg Am.)
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FIGURE 2-26. Histogram illustrating the growth of highly cross-
linked UHMWPE acetabular component sales in the United States.
(Data from Orthopaedic Network News.1)

States today are constituted of highly cross-linked poly-
ethylenes in their various formulations1 (Figure 2-26).
Cost as well as patient selection and the unknown clini-
cal realities of long-term series reporting are concerns
with these materials that only in vivo time will elucidate.
The march of progress toward increasing use of these
materials—in the relative absence of mid- and long-term
clinical reports—portrays a rapid direct-to-consumer
marketing philosophy employed by orthopedic manufac-
turers for both the orthopedic surgeon and the patients
they serve.

THE PROMISE

The previous remarks have attempted to define prob-
lems, solutions, and unknown performance factors of
both conventional and emerging highly cross-linked
UHMWPE materials currently used in knee arthroplasty.
What is important for the reader to appreciate is that the
description of employment of highly cross-linked poly-
mers in knee arthroplasty is an evolving experience, which
will find advocacy or limitation in what is now a tandem
laboratory and clinical approach. The passage of in vivo
time, as has always been, will be the defining factor in
their use.
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