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Introduction

Positron emission tomography (PET) is an imaging
technique that provides in vivo measurements in ab-
solute units of a radioactive tracer. One of the attrac-
tive aspects of PET is that the radioactive tracer can be
labelled with short-lived radioisotopes of the natural
elements of the biochemical constituents of the body.
This provides PET with a unique ability to detect and
quantify physiologic and receptor processes in the
body, particularly in cancer cells, that is not possible by
any other imaging technique.

The clinical role of PET has evolved considerably
over the last decade. From its first applications princi-
pally in neurology and cardiology, the evaluation of
oncology patients has become a pre-eminent clinical
role for PET worldwide. Oncology PET studies now
represent almost 90% of clinical studies performed in
clinical PET Centres worldwide[1–5]. The dramatic rise
in the number of PET oncology studies performed is
related both to recent reimbursement approvals (partic-
ularly in the USA), as well as the increasing evidence for
the role of PET in the staging, monitoring treatment re-
sponse and biologic characterisation of tumours.

PET Radionuclides in Oncology

The short-lived radionuclides (radioisotopes) required
for PET are produced in cyclotrons. In PET oncology
clinical applications, the most commonly used
positron-emitting tracer is 18F-fluoro-2-deoxy-glucose,
or [18F]-FDG [6]. The unique versatility of PET lies in

the ability to study numerous physiologic and bio-
chemical processes in vivo. The measurement of tissue
blood flow, oxygen metabolism, glucose metabolism,
amino acid and protein synthesis and nucleic acid
metabolism have all been demonstrated in PET oncol-
ogy clinical studies [6–9]. To exploit these physiologic
and molecular targets, there are a number of positron
emitting radiopharmaceuticals that have been used in
clinical oncology studies to date (Table 16.1). Labelling
of a large array of other compounds including hypoxic
markers, amino acids, DNA proliferation markers and
chemotherapy drugs with 11C and 18F have also been
studied in clinical trials [3, 7, 8, 10].

The Evidence for Clinical Use of
PET in Oncology

The experience over the last decade is that the most
important clinical role of [18F]-FDG PET is in oncology.
In many cancers, [18F]-FDG PET has been shown to be
the most accurate non-invasive method to detect and
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Table 116.1. Positron-emitting radionuclides used in oncology clinical
studies (see appendix for further radionuclide information).

Radionuclide Half-Life

15O 122 seconds
13N 9.97 minutes
11C 20.4 minutes
18F 109.8 minutes
124I 4.17 days
86Y 14.7 hours
64Cu 12.8 hours 



stage tumours [1–5, 7–9, 11–21]. This has major impli-
cations in terms of improving the planning of treat-
ment and avoiding unnecessary treatment and its
associated morbidity and cost. Evaluation of the evi-
dence for [18F]-FDG PET in clinical oncology practice
has been complicated by the inherent diagnostic nature
of this imaging technique. While standard evidence-
based approaches to treatment require randomised
controlled trials to establish the appropriate outcome
or efficacy measures for assessment, imaging tech-
niques provide information which is commonly used
as only a part of the management paradigm of most
patients. As such, the practical and ethical issues sur-
rounding this make randomised controlled trials for
PET extremely difficult to perform or inappropriate in
the majority of clinical scenarios [5, 22]. The establish-
ment of diagnostic accuracy, and impact on patient
management (including cost), are therefore the most
appropriate levels of evidence that can be accurately
obtained for PET in clinical practice [5, 22].

Brain Tumours

Brain tumours are a common and often devastating
malignancy that impacts on both paediatric and adult

populations. In adults, brain tumours are the leading
cause of death for males aged 15 to 34 years, and are
the fourth commonest cause of cancer death in females
of this age group. Paediatric brain tumours are the
second commonest cancer, and the second leading
cause of death from cancer, in that age group [23, 24].
The evaluation of brain tumours with [18F]-FDG PET
is the longest established oncologic application of PET.
Tumour grade can be assessed accurately and non-in-
vasively by [18F]-FDG PET, as the rate of glucose utili-
sation is directly proportional to the degree of
malignancy [25]. This can be used in the planning of
biopsies, and in monitoring high grade recurrence,
particularly in patients with low grade glioma.
Increased [18F]-FDG uptake is seen in high grade glial
tumours, as well as in primary cerebral lymphomas,
pilocytic astrocytomas, and some unusual tumours
(e.g., pleomorphic xanthoastrocytoma. Low grade
gliomas) (Fig. 16.1) and other primary brain tumours
(e.g., meningiomas) do not usually show increased
[18F]-FDG uptake except in more aggressive tumours
and in post-radiation meningiomas.

Cerebral metastases occur in 20 to 40% of systemic
malignancies, and may be the initial presentation of
malignancy in 16 to 35% of cases. [18F]-FDG PET has
been extensively studied in patients with cerebral
metastases, and has been shown to have a sensitivity
ranging from 68 to 79% [26]. The principal issue with
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Figure 116.1. (A) MRI scan, and (B) corresponding transaxial [18F]-FDG PET scan of a 53-year-old patient with bilateral hearing loss. A lesion in the left thalamus
(arrow) is hypometabolic on [18F]-FDG PET scan. This was subsequently demonstrated to be a low grade glioma.



FDG PET in this setting is the frequent hypometabolic
nature of cerebral metastases, and in addition, metasta-
tic lesions are often small (<1 cm in size), and because
metastases most often occur at the interface between
grey and white matter, identification of lesions can be
problematic.

An important role of [18F]-FDG PET is in the assess-
ment of tumour recurrence compared to radiation
necrosis, factors critical to the management of these
patients and often impossible to determine accurately
by CT or MRI (27). The uptake of [18F]-FDG in normal
grey matter may make evaluation of tumour recur-
rence difficult in some cases, and care is required in
order to interpret PET scans in these patients.

Patient prognosis may also be evaluated by the pres-
ence and degree of uptake of [18F]-FDG [28]. While the
evaluation of disease recurrence may also be evaluated
with other techniques including 201Tl SPECT, which is
more readily available, the problems of blood-brain
barrier disruption and mixed grade tumour assess-
ment with 201Tl SPECT may be more accurately as-
sessed with [18F]-FDG PET. Incorporating [18F]-FDG
PET into radiotherapy treatment planning, and in
monitoring response to therapy, has also emerged as
important applications of PET in brain tumours.

A range of other PET tracers have been studied in
brain tumours, examining DNA proliferation, protein
expression, hypoxia and even gene reporter expression
[29, 30]. The most commonly studied tracer is [11C]-
methionine PET, which has some advantages in detect-
ing low grade gliomas, although the ability to
discriminate between high grade and low grade
tumours may be less accurate with [11C]-methionine
PET compared to [18F]-FDG PET [31]. In summary, PET
studies are an established part of the management of
patients with brain tumours in major neuro-oncology
centres.

Lung Carcinoma

Solitary Pulmonary Nodules

There have been numerous studies examining the ac-
curacy of [18F]-FDG PET in evaluating solitary pul-
monary nodules [32, 33]. Analysis of the published data
has shown a high sensitivity (average 96%) and
accuracy (average 94%) for determining malignancy
(Figs. 16.2 and 16.3 [2, 8, 34]. The specificity is also high
but the variation is slightly greater and is dependent on
the local prevalence of the known causes of false posi-

tive cases, particularly granulomatous diseases such as
tuberculosis and histoplasmosis. False negative results
may arise where small lesions are present (<0.6 cm),
due to the resolution limitations of PET scanners and
respiratory motion over the acquisition period, and
also with certain types of lung cancer such as broncho-
alveolar and carcinoid. The use of [18F]-FDG PET for
solitary pulmonary nodules is often reserved for those
cases where fine needle aspiration is technically
difficult in view of the superior diagnostic yield of this
technique.

Staging of Non-Small Cell Lung
Carcinoma

In patients with known non-small cell lung carcinoma
(NSCLC), the results of staging both within and outside
the thorax are key in determining operability.
Demonstration of unilateral hilar adenopathy is not a
contra-indication to surgery if the nodes can be re-
sected with the primary tumour. Conversely, extensive
mediastinal involvement, involvement of contralateral
lymph nodes, as well as pleural or distant metastases
should contra-indicate surgery given the high surgical
morbidity and the poor prognosis. The relatively sub-
optimal sensitivity, specificity and accuracy of conven-
tional imaging techniques, including CT and MRI, for
staging of lung carcinoma has been demonstrated
repeatedly [35].

Numerous studies have evaluated the role of [18F]-
FDG PET for staging NSCLC [11, 17, 18, 35–38]. The re-
ported sensitivity for lymph node staging in non-small
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Figure 116.2. Coronal sections of a [18F]-FDG PET scan performed in a 
72-year-old man with a left lung carcinoma. Uptake of [18F]-FDG in the
primary lung cancer (arrow) and lymph nodes (arrow) is seen, as well as an
unsuspected metastasis in a thoracic vertebrae (arrow).
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Figure 116.3. (A) Coronal section of a [18F]-FDG PET scan performed in a 76 yr old man with left lower lobe lung nodule (arrow), seen also in (B) CXR. The lesion
was hypometabolic on [18F]-FDG PET scan, and was non-malignant. An incidental finding of increased [18F]-FDG uptake in the rectum, seen on (C) transaxial and
(D) sagittal images (arrow) was due to a non-diagnosed rectal cancer.



cell lung carcinoma varies from 82 to 100% and the
specificity from 73 to 100% [11, 16, 36, 37, 39, 40]. In all
series, [18F]-FDG PET has been shown to outperform
CT in staging lymph node spread of disease, and has
been shown to correctly stage disease over CT scan
results in up to 24% of patients (Fig. 16.2) (37). In a
recent randomised controlled trial of [18F]-FDG PET in
staging patients with newly diagnosed NSCLC, the in-
clusion of [18F]-FDG PET in diagnostic work up
reduced futile thoracotomies by half, indicating the im-
portant role of [18F]-FDG PET in this staging process
(18). The negative predictive value of [18F]-FDG PET is
sufficiently high that a negative mediastinum on [18F]-
FDG PET scanning may preclude mediastinoscopy in
patient work-up, and a positive mediastinum on [18F]-
FDG PET should always be further assessed to exclude
false positive results (e.g., sarcoid) [5, 38]. In addition,
studies utilising whole body scanning have reported
unsuspected metastatic disease in up to 15% of pa-
tients (Fig. 16.2) [39]. This is particularly relevant for
adrenal lesions, where benign enlargement is common,
and [18F]-FDG PET is highly accurate in identifying
metastatic involvement [16]. Through correct staging
by [18F]-FDG PET, therapy has been shown to be
changed in >40% of patients, mainly by obviating un-
necessary surgery [40]. [18F]-FDG PET has emerged as
a standard pre-operative assessment test in patients
with NSCLC.

Recurrent Lung Carcinoma and Response
to Therapy Assessment

The ability to accurately evaluate residual masses fol-
lowing surgery or radiotherapy for lung cancer is es-
sential in many patients. Post treatment fibrosis and
scarring is common, and [18F]-FDG PET has been
shown in a number of small series to be accurate in
detecting residual tumour, which allows treatment
planning decisions to be reliably made [15]. The po-
tential role of [18F]-FDG PET in treatment planning
for radiotherapy of unresectable lung cancer has also
been explored, and may provide improved treatment
with a reduced incidence of relapse outside the radio-
therapy field [41]. In addition, in patients with NSCLC
undergoing radical radiotherapy or chemoradiother-
apy, [18F]-FDG PET performed soon after therapy has
been shown to be a superior predictor of survival than
CT response, stage, or pre-treatment performance
status [42].

Colorectal Carcinoma

Staging of Primary Colorectal Cancer

The diagnosis of colorectal cancer is principally based
on colonoscopy and biopsy, with imaging being per-
formed primarily to assist in initial surgical planning.
There have been a number of studies examining the
utility of PET for staging primary colorectal carci-
noma. In one study of 16 patients with known or sus-
pected primary or recurrent colon and rectal cancer
studied with [18F]-FDG PET and CT scans, PET de-
tected all 12 sites of disease in bowel, whereas CT only
detected 6 [43]. Other small studies have confirmed
these results, although lymphatic spread of tumour was
poorly detected with [18F]-FDG PET due to the small
size of involved lymph nodes in many cases [44].
Primary colorectal cancers occasionally present as an
incidental finding on [18F]-FDG PET (Fig. 16.3), and
[18F]-FDG uptake has been reported in adenomatous
polyps, a pre-cursor for colon cancer [45]. However, the
presence of physiological gut uptake of FDG combined
with false positive uptake in inflammatory disease
along with low sensitivity to lesions less than 1 cm pre-
cludes a significant role for FDG PET in primary diag-
nosis or screening [46]. The role of PET in primary
colon cancer remains limited, and should be reserved
for clinical situations where resection of metastatic
disease requires accurate staging of distant spread.
This is in contrast to advanced rectal cancer, where
[18F]-FDG PET has been shown to have a significant
impact on management in up to one third of patients
planned for preoperative adjuvant treatment (chemo-
radiation), indicating the potential role of [18F]-FDG
PET in this clinical setting [47].

Staging of Metastatic Colon Cancer

Hepatic Metastases

Clinical studies have shown [18F]-FDG PET to be a
highly sensitive technique for the detection of hepatic
metastases of colorectal cancer. In published series the
accuracy of [18F]-FDG PET in identifying metastatic
colorectal carcinoma in the liver has ranged from 90 to
98% [8]. The role of PET in this clinical setting appears
to be complementary to CT scan and CT portography
[48–50]. Mucinous adenocarcinoma may have a lower
sensitivity for detection [51]. Importantly, [18F]-FDG
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PET has been shown to identify previously un-
suspected extrahepatic disease in patients with liver
metastases in up to 20% of patients, and can change
management in reported series in up to 35% of
patients [12, 52].

Extrahepatic Metastases

The detection of extrahepatic metastases of colorectal
carcinoma remains a difficult clinical problem. While
CT scans are sensitive for hepatic metastases, they are
less sensitive for detecting extrahepatic disease [12,
53]. MRI, while as accurate as CT for detecting hepatic

metastases of colorectal carcinoma, remains less sensi-
tive in extrahepatic intra-abdominal disease [54]. This
is of particular importance in patients considered for
surgery for metastatic disease, in view of the high
prevalence of undiagnosed sites of extrahepatic disease
which results from conventional techniques pre-
operatively.

Studies examining the accuracy of PET in extra-
hepatic metastases of colorectal carcinoma have
demonstrated higher accuracy than conventional
scanning techniques (including CT scan) [12, 52].
Extrahepatic disease has been detected with [18F]-FDG
PET with an accuracy of 92 to 93% in recent series. In
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Figure 116.4. An 83-year-old woman with a history of colon cancer and a rising CEA underwent a combined PET/CT scan for staging. (A) transaxial, (B) sagittal
and (C) coronal images show a focal area of abnormal [18F]-FDG uptake (arrow), corresponding to a retroperitoneal lymph node region on corresponding CT
slices [(D), (E) and (F)]. Co-registered [18F]-FDG PET/CT images [(G), (H) and (I)] show precise localisation of the recurrent colon cancer in the retroperitoneum. 



patients with elevated serum CEA markers, occult
disease (often extrahepatic recurrence) has been
identified accurately with [18F]-FDG PET (Fig. 16.4)
[12, 52]. These results have been confirmed in a recent
meta-analysis of whole-body [18F]-FDG PET studies in
patients with colorectal carcinoma, where the sensitiv-
ity and specificity of [18F]-FDG PET in detecting
tumour was 97% and 76% respectively, and the change
in management was calculated to be 29%, both by up-
staging and downstaging disease [55].

Rectal Carcinoma Recurrence

Recurrent colorectal (pelvic) cancer has been re-
ported to occur in 20 to 40% of patients within two
years after potentially curative surgery [56]. Both CT
and MRI, however, have significant difficulties in reli-
ably distinguishing local spread of disease, and recur-
rence of rectal cancer from post surgical change [53].
There have been a number of extremely promising
clinical studies with [18F]-FDG PET in the evaluation
of possible rectal carcinoma recurrence. In one study
of 37 patients with suspected rectal carcinoma recur-
rence, 32/32 patients with recurrent rectal carcinoma
were correctly identified with [18F]-FDG PET [57].
The accuracy of [18F]-FDG PET in this setting has
also been demonstrated in other published clinical
studies [8].

Management Impact of PET and Response to
Therapy Assessment

The management impact of [18F]-FDG PET in recur-
rent colorectal carcinoma has been clearly demon-
strated [58, 59]. Studies of [18F]-FDG PET post therapy
(chemo/radiotherapy) have also demonstrated a poten-
tial role of [18F]-FDG PET in this setting [13, 60, 61].
Based on available evidence, [18F]-FDG PET should be
used in the detection of advanced or metastatic col-
orectal cancer where management will be altered by
disease presence and extent.

Lymphoma

The ability of whole body [18F]-FDG PET to accurately
stage lymphoma has emerged as an important role of
PET in patient management. In the staging of
Hodgkins Disease and non-Hodgkins lymphoma
(NHL) the sensitivity and specificity of [18F]-FDG PET
in detecting sites of disease has been reported as

86–90% and 93–96% respectively, and superior to CT
scan [2, 8, 62]. Compared to conventional imaging (e.g.,
CT scans) [18F]-FDG PET is more sensitive in identify-
ing extra-nodal sites of disease. [18F]-FDG PET has
been shown to change management in up to 40% of
patients undergoing staging at initial diagnosis [21,
63–65]. In comparison to 67Ga scans, [18F]-FDG PET
has been shown to have a greater sensitivity for disease
detection (particularly spleen), and in view of the po-
tential advantage of a same day procedure has sup-
planted 67Ga scans in many oncology centres [66]. In
some cases of low grade lymphoma [18F]-FDG uptake
may not be high, however this is dependent on histo-
logic subtype, and high sensitivity for disease sites has
been reported for follicular and marginal zone low
grade lymphoma, and with management change re-
ported in up to 34% of patients (Fig. 16.5) [64, 67].

[18F]-FDG PET has also been shown to have superior
accuracy compared to conventional imaging in the
restaging of lymphoma patients, particularly where
residual masses are present [68, 69]. In comparison to
67Gallium scans, [18F]-FDG PET has been shown to be
more accurate in identifying active disease in residual
masses (66, 70). [18F]-FDG PET performed as part of
the assessment of treatment response for NHL has also
been shown to be superior to conventional imaging
and to be a strong prognostic indicator of response and
progression free survival [68, 71]. [18F]-FDG PET there-
fore has a major role in both the initial staging, and
restaging/therapy response assessment of patients with
lymphoma.

Melanoma

The role of [18F]-FDG PET in the initial staging of
low-risk (<1 mm thickness) and intermediate-risk
(1–3 mm thickness) melanoma is limited, due to the
low prevalence of metastatic disease (particularly in
low-risk melanoma), and the often small size of
metastatic deposits in nodes involved with metastatic
spread [72, 73].

Malignant melanoma can spread widely and un-
predictably throughout the body, and median survival
after the appearance of distant metastases is approxi-
mately six months [74]. The accuracy of [18F]-FDG PET
in detecting metastatic melanoma has been reported to
range from 81 to 100%, and in one series of 100 pa-
tients demonstrated a sensitivity of 93% [14]. [18F]-
FDG PET has been shown to be particularly sensitive
in detecting subcutaneous and visceral metastases
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(Fig. 16.6). In published studies and meta-analyses of
the literature, [18F]-FDG PET has been demonstrated to
detect disease up to six months earlier than conven-
tional techniques, and alter management in 22 to 32%
of patients, principally by altering plans for surgical re-
section of metastatic disease [14, 75–77]. As approxi-
mately one quarter of all melanoma patients with
metastatic disease are potential candidates for surgical
resection, and long disease-free intervals are possible
in patients rendered clinically disease free by the
surgery, [18F]-FDG PET has a clear role in this clinical
setting [5, 78].

[18F]-FDG PET has also been compared to other
staging investigations for metastatic melanoma. In a
series of 121 patients with metastatic melanoma where
[18F]-FDG PET was compared to 67Ga scintigraphy, PET
was more accurate and provided incremental and
clinically important information in 10% of patients,
and at a lower cost [79]. The role of [18F]-FDG PET in
melanoma is therefore principally in the evaluation of
extent of metastatic disease, the accurate assessment of
which can alter patient management particularly
where surgery is planned.
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Figure 116.5. A 48-year-old woman with Follicular lymphoma of the right axilla underwent a staging [18F]-FDG PET/CT scan prior to planned radiotherapy. 
(A) transaxial, (B) sagittal and (C) coronal whole body staging [18F]-FDG PET images show lymphoma in right axillary lymph nodes (arrow), as well as additional
lymphoma sites in the left axilla and left illiac nodes (arrows). Corresponding CT scan images [(D), (E) and (F)] show right axillary node enlargement only. The
[18F]-FDG PET results upstaged the patient from Stage I to Stage III.

Figure 116.6. A 45-year-old woman with a history of right postauricular
melanoma and previous resection of metastases in the right parotid and ip-
silateral cervical lymph nodes, was referred for a restaging [18F]-FDG PET
scan prior to possible radiotherapy to the operative sites. A coronal whole
body image shows multiple metastatic lesions in subcutaneous, lymph
node, lung and visceral sites (arrows) throughout the body.



Head and Neck Tumours

The presence of lymph node spread of head and neck
tumours is associated with substantially worse progno-
sis, and clinical examination and imaging techniques
(CT and MRI) detect fewer than 50% of involved
lymph nodes, which may result in unnecessary neck
surgery. In patients with head and neck tumours
studied prior to initial surgery, the sensitivity and
specificity of [18F]-FDG PET in detecting nodal metas-
tases has been reported ranging from 71 to 91%, and
88-100%, respectively (Fig. 16.7) [8, 80–83]. Metastatic
disease outside the neck can also be identified with
[18F]-FDG PET scans [84]. Primary tumours can also
be detected with a similar sensitivity to CT/MRI. In pa-
tients studied after initial treatment of metastatic
nodal disease with radiotherapy, [18F]-FDG PET is
often accurate only after a three month period [20,
85–87]. This has been shown to be due to the effects of
stunning of tumour cells, where the metabolic rate and
proliferation of cancer cells may be suppressed after

radiotherapy, as well as the possible presence of micro-
scopic disease only after radiotherapy treatment which
is below the resolution of the PET camera. In both
patient groups, the accuracy of [18F]-FDG PET has the
potential to direct surgeons to otherwise unknown
sites of metastatic disease, as well as avoiding surgery
in areas of the neck where [18F]-FDG PET scans show
negative results. [18F]-FDG PET has also been shown to
be a prognostic factor for radiotherapy response [88].
In patients with advanced loco-regional head and neck
cancer, radiotherapy treatment planning incorporating
[18F]-FDG PET information has emerged as an exciting
new method of potentially improving response rates.

Breast Carcinoma

The use of [18F]-FDG PET in breast carcinoma has
been evaluated in the initial assessment and staging of
disease, and in monitoring response to therapy. In
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Figure 116.7. (A) transaxial, (B) sagittal and (C) coronal [18F]-FDG PET scan images of a 60 yr old man with carcinoma of the right tonsil and base of tongue
(arrows). A previously undiagnosed lymph node metastasis is also seen (arrow). Co-registered [18F]-FDG PET/CT images on corresponding images [(D), (E) and
(F)] show the precise localisation of sites of tumour.



primary breast tumours, [18F]-FDG PET has been
shown to have a mean sensitivity and specificity for
tumour detection of 88 and 79% respectively in a
recent meta-analysis (Fig. 16.8) [89]. Axillary nodal in-
volvement is a critical issue in the management of pa-
tients with breast carcinoma, and [18F]-FDG PET has
been shown to have a sensitivity ranging from 57 to
100% and specificity of 66 to 100% across reported
series [8]. In a recent prospective study of 360 patients,
[18F]-FDG PET was shown to have moderate accuracy
in detecting axillary metastases, but often missed small
or few nodal metastases [90]. [18F]-FDG PET is there-
fore not routinely recommended for the axillary
staging of breast cancer patients.

One potential area where [18F]-FDG PET has shown
great promise is in whole body staging of metastatic
breast cancer, where the accuracy of [18F]-FDG PET
has been shown to be higher than conventional
staging techniques [91, 92]. [18F]-FDG PET has also
been evaluated for assessment of tumour response to
therapy [61, 93]. Further evaluation in monitoring
response to chemotherapy is warranted before the
true role of [18F]-FDG PET in this setting can be
determined.

Gastric and Oesophageal Tumours

Although the detection of primary gastric and
oesophageal tumours with [18F]-FDG PET has been re-
ported to be excellent, the identification of regional
nodal metastases has been restricted by the presence
of small volume disease in some lymph nodes 
(Fig. 16.8) [32]. Unsuspected distant disease may be de-
tected by [18F]-FDG PET in up to 20% of cases, and re-
current disease may also be evaluated more accurately
than CT scan, which may represent the more appropri-
ate clinical utility of this technique [32].

[18F]-FDG PET has been shown to significantly
improve detection of haematogenous and distant lym-
phatic metastasis in carcinoma of the oesophagus and
gastro-oesophageal junction (GEJ) [32, 94–96]. There is
no difference in accuracy in detecting squamous cell
carcinoma or adenocarcinoma of the oesophagus with
[18F]-FDG PET. [18F]-FDG PET may not be as accurate
as EUS or CT in determining wall invasion or close
lymph node spread of disease, however the diagnostic
specificity of lymph node involvement is greatly
improved with [18F]-FDG PET [95]. [18F]-FDG PET is
more accurate in detecting distant disease, and is also
highly accurate in the diagnosis of recurrent disease
[94–97]. In assessing response of induction therapy
(chemotherapy – radiotherapy) in locally advanced
disease, [18F]-FDG PET also appears to be of high value
in predicting response [98].

Ovarian Carcinoma

Ovarian carcinoma is the leading cause of death among
gynaecological tumours [99]. The treatment of ovarian
carcinoma primarily consists of surgical resection fol-
lowed by chemotherapy and/or radiotherapy. Accurate
staging is essential, particularly in the restaging of
patients with elevated serum markers (CA-125). [18F]-
FDG PET has been shown to have high accuracy in de-
tecting in ovarian carcinoma lesions greater than 1 cm
in size, but the detection of micrometastatic disease
(one of the most important issues in this disease) has
been difficult [100–102]. In several series, [18F]-FDG
PET has been shown to be accurate in restaging pa-
tients with ovarian cancer, and may be better than CA-
125 in this clinical setting [100, 101].. The role of
[18F]-FDG PET in the management of ovarian carci-
noma remains to be clearly defined, but may princi-
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Figure 116.8. Whole body 3D coronal [18F]-FDG PET image of an 81-year-old
woman with an oesophageal carcinoma (arrow). A previously undiagnosed
left breast carcinoma was also identified (arrow), subsequently confirmed
on biopsy. Normal excretion of [18F]-FDG from kidneys, and in bladder, and
normal uptake of [18F]-FDG in ascending colon, is also evident.



pally be in the evaluation of recurrent masses follow-
ing therapy, or distant disease.

Germ Cell, Renal Cell and Other
Tumours

Studies of [18F]-FDG PET in germ cell tumours and in
bone and soft tissue sarcomas have shown high accu-
racy in detecting metastatic disease and monitoring
response to therapy, although reported patient
numbers are small [102, 103]. Renal cell carcinoma
may also be accurately staged with [18F]-FDG PET, and
is particularly useful for the detection of metastatic
disease, while false negative primary tumours are
occasionally observed [19, 104, 105]. The role of [18F]-
FDG PET in tumours such as hepatoma has been
limited, due to the low grade nature of these tumours
and the poor uptake of [18F]-FDG in clinical studies
[2]. In cervical carcinoma, recent reports have shown
that [18F]-FDG PET has a high positive predictive
value for the detection of metastatic nodes in the
pelvis and para-aortic regions, which may assist with
surgical planning or possibly indicate cases where
chemoradiotherapy may be the most appropriate
therapy (Fig. 16.9) [106]. An important emerging role
of [18F]-FDG PET is in the detection of metastatic
thyroid carcinoma (particularly where 131I scan is neg-
ative and serum thyroglobulin levels are elevated),
and evaluation of medullary thyroid carcinoma. The
application of [18F]-FDG PET in detecting sites of
disease for many other less common malignant
tumours is the subject of continuing clinical review.

Monitoring Response of Tumour
to Therapy

An emerging area of clinical utility of PET is in the
monitoring of tumour response to therapy, principally
with [18F]-FDG. Accurate evaluation of response to
both chemotherapy and radiation therapy, often prior
to CT scan changes, have been reported in glioma, col-
orectal, NSCLC, lymphoma, head and neck tumours,
and soft tissue sarcomas [2, 8, 16, 17, 42, 61, 107]. The
timing and reliability of [18F]-FDG PET studies in pre-
dicting tumour response is the subject of numerous
prospective studies. The implications of this approach
are significant in terms of optimising treatments, min-
imising unnecessary morbidity, and reducing costs.

Perhaps the most potentially important clinical use
of PET can be found in the ability to label with
positron emitters compounds that are either physio-
logic targets or therapeutics used in cancer therapy.
This enables the development of novel compounds,
either therapy compounds themselves (e.g., 18F-
Fluorouracil), or tracers that measure physiologic
events (e.g. 18F-fluoromisonidazole for hypoxia, and
H2

15O for perfusion), that can predict the success of a
therapeutic approach [3, 5, 108, 109]. The pharmacoki-
netics and pharmacodynamics of therapeutics, mea-
surements of biologic change (e.g., DNA proliferation,
signalling events, oxygen metabolism, protein synthe-
sis), or success of treatment e.g., gene therapy, can be
accurately evaluated by PET, and may enable more
scientific decisions to be made as to treatment efficacy,
and how improvements in effect can be achieved [5, 29,
110–114]. These “surrogate markers” for tumour
biology provide a unique link between the molecular
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Figure 116.9. A 71-year-old woman with a cervical carcinoma underwent a PET/CT scan for staging. Transaxial (A) [18F]-FDG PET image shows a large primary
tumour (arrow) posterior to the bladder, as well as a right groin lymph node (arrow). (B) CT image, and (C) co-registered [18F]-FDG PET/CT scan show the loca-
tion of the primary and metastatic tumour.



events associated with cancer to the biology of tumour
cells, and will dramatically assist in the development of
innovative approaches to cancer therapy .

PET/CT scanners in Oncology

The development of combined PET/CT scanners has
dramatically changed the approach to PET image in-
terpretation, as the seamless integration of anatomic
and PET images allows more accurate determination of
abnormal sites and potential clinical relevance [115].
The superior accuracy of this approach in the assess-
ment of many cancers including NSCLC, colorectal
cancer, lymphoma and melanoma has been reported
[116, 117]. Further assessment of this technology, in-
cluding the ability to integrate PET/CT data in radio-
therapy treatment planning, is an area of significant
importance for the management of oncology patients
in the future.

Conclusions

PET has emerged as a powerful diagnostic tool in the
management of patients with cancer. The published lit-
erature has provided evidence of the superior utility
over conventional imaging methods of the principal
PET tracer [18F]-FDG in the staging of a range of
cancers, in monitoring disease recurrence, and in
changing patient management to more appropriate
therapy. Emerging new PET tracers that can quantitate
non-invasively biologic processes within tumours, and
the introduction of PET/CT into routine clinical prac-
tice, are further enhancing the role of PET in oncology.
PET has the potential to dramatically improve our
ability to manage patients with cancer, and is making
major contributions to our understanding of cancer
biology and in developing new therapies.
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